
Session 2
Topics models and machine-learning algorithms for classification

Michele Scotto di Vettimo
King’s College London

� https://mscottodivettimo.github.io/
� michele.scotto_di_vettimo@kcl.ac.uk

LISS2117 · Quantitative methods for text classification and topic detection

https://mscottodivettimo.github.io/
mailto:michele.scotto_di_vettimo@kcl.ac.uk

Programme

Ï Unsupervised classification: topic models
Ï Semisupervised classification (1): Keyword assisted topic models
Ï Supervised classification (2): Machine learning algorithms
Ï Validation

Recap of previous session

In previous episodes...

Ï Text-as-data methods builds on numerical representation of our raw texts

Ï Bag-of-words representations are the most common way of representing texts into
numerical form

o They do so by splitting texts into tokens, and then arranging them in a
document-feature matrix (dfm)

o The construction of the dfm needs to be tailored to the research task

Ï Classification methods rely on the mapping of tokens into categories/labels

o In dictionary methods, the analyst provides this mapping beforehand, whereas in other
methods it is “learned” from the data

Ï Validation is an essential part of the analysis, and different methods require different
types of validation

In previous episodes...

Ï Text-as-data methods builds on numerical representation of our raw texts

Ï Bag-of-words representations are the most common way of representing texts into
numerical form

o They do so by splitting texts into tokens, and then arranging them in a
document-feature matrix (dfm)

o The construction of the dfm needs to be tailored to the research task

Ï Classification methods rely on the mapping of tokens into categories/labels

o In dictionary methods, the analyst provides this mapping beforehand, whereas in other
methods it is “learned” from the data

Ï Validation is an essential part of the analysis, and different methods require different
types of validation

In previous episodes...

Ï Text-as-data methods builds on numerical representation of our raw texts

Ï Bag-of-words representations are the most common way of representing texts into
numerical form

o They do so by splitting texts into tokens, and then arranging them in a
document-feature matrix (dfm)

o The construction of the dfm needs to be tailored to the research task

Ï Classification methods rely on the mapping of tokens into categories/labels

o In dictionary methods, the analyst provides this mapping beforehand, whereas in other
methods it is “learned” from the data

Ï Validation is an essential part of the analysis, and different methods require different
types of validation

In previous episodes...

Ï Text-as-data methods builds on numerical representation of our raw texts

Ï Bag-of-words representations are the most common way of representing texts into
numerical form

o They do so by splitting texts into tokens, and then arranging them in a
document-feature matrix (dfm)

o The construction of the dfm needs to be tailored to the research task

Ï Classification methods rely on the mapping of tokens into categories/labels

o In dictionary methods, the analyst provides this mapping beforehand, whereas in other
methods it is “learned” from the data

Ï Validation is an essential part of the analysis, and different methods require different
types of validation

In previous episodes...

Ï Text-as-data methods builds on numerical representation of our raw texts

Ï Bag-of-words representations are the most common way of representing texts into
numerical form

o They do so by splitting texts into tokens, and then arranging them in a
document-feature matrix (dfm)

o The construction of the dfm needs to be tailored to the research task

Ï Classification methods rely on the mapping of tokens into categories/labels

o In dictionary methods, the analyst provides this mapping beforehand, whereas in other
methods it is “learned” from the data

Ï Validation is an essential part of the analysis, and different methods require different
types of validation

In previous episodes...

Ï Text-as-data methods builds on numerical representation of our raw texts

Ï Bag-of-words representations are the most common way of representing texts into
numerical form

o They do so by splitting texts into tokens, and then arranging them in a
document-feature matrix (dfm)

o The construction of the dfm needs to be tailored to the research task

Ï Classification methods rely on the mapping of tokens into categories/labels

o In dictionary methods, the analyst provides this mapping beforehand, whereas in other
methods it is “learned” from the data

Ï Validation is an essential part of the analysis, and different methods require different
types of validation

In previous episodes...

Ï Text-as-data methods builds on numerical representation of our raw texts

Ï Bag-of-words representations are the most common way of representing texts into
numerical form

o They do so by splitting texts into tokens, and then arranging them in a
document-feature matrix (dfm)

o The construction of the dfm needs to be tailored to the research task

Ï Classification methods rely on the mapping of tokens into categories/labels

o In dictionary methods, the analyst provides this mapping beforehand, whereas in other
methods it is “learned” from the data

Ï Validation is an essential part of the analysis, and different methods require different
types of validation

In previous episodes...

Unsupervised classification

Unsupervised, semisupervised, and supervised methods

We use these terms to categorise methods according to how much labelled data
(human guidance, basically) is needed to learn relations between tokens and labels
(and ultimately to assign a text to a class)

In the previous session we covered dictionary methods. In dictionaries the association
between tokens and labels is specified in advance, so the model does not do any
learning. Hence, dictionary methods do not really fit this categorisation.

However, in other cases text-as-data models learn associations between tokens in our
texts and labels from the corpus, and they might do so with the help of some labelled
data.

Unsupervised methods: use modeling assumptions and properties of the texts to
estimate categories and assign documents to them (no labelled data needed)

Semisupervised methods: use both a small amount of labelled data and unlabelled
texts to learn relations between tokens and labels and classify texts (limited amount of
labelled data used)

Supervised methods: trained on labelled texts to learn relations between tokens and
labels and classify texts (labelled training data required)

Unsupervised, semisupervised, and supervised methods

We use these terms to categorise methods according to how much labelled data
(human guidance, basically) is needed to learn relations between tokens and labels
(and ultimately to assign a text to a class)

In the previous session we covered dictionary methods. In dictionaries the association
between tokens and labels is specified in advance, so the model does not do any
learning. Hence, dictionary methods do not really fit this categorisation.

However, in other cases text-as-data models learn associations between tokens in our
texts and labels from the corpus, and they might do so with the help of some labelled
data.

Unsupervised methods: use modeling assumptions and properties of the texts to
estimate categories and assign documents to them (no labelled data needed)

Semisupervised methods: use both a small amount of labelled data and unlabelled
texts to learn relations between tokens and labels and classify texts (limited amount of
labelled data used)

Supervised methods: trained on labelled texts to learn relations between tokens and
labels and classify texts (labelled training data required)

Unsupervised, semisupervised, and supervised methods

We use these terms to categorise methods according to how much labelled data
(human guidance, basically) is needed to learn relations between tokens and labels
(and ultimately to assign a text to a class)

In the previous session we covered dictionary methods. In dictionaries the association
between tokens and labels is specified in advance, so the model does not do any
learning. Hence, dictionary methods do not really fit this categorisation.

However, in other cases text-as-data models learn associations between tokens in our
texts and labels from the corpus, and they might do so with the help of some labelled
data.

Unsupervised methods: use modeling assumptions and properties of the texts to
estimate categories and assign documents to them (no labelled data needed)

Semisupervised methods: use both a small amount of labelled data and unlabelled
texts to learn relations between tokens and labels and classify texts (limited amount of
labelled data used)

Supervised methods: trained on labelled texts to learn relations between tokens and
labels and classify texts (labelled training data required)

Unsupervised, semisupervised, and supervised methods

We use these terms to categorise methods according to how much labelled data
(human guidance, basically) is needed to learn relations between tokens and labels
(and ultimately to assign a text to a class)

In the previous session we covered dictionary methods. In dictionaries the association
between tokens and labels is specified in advance, so the model does not do any
learning. Hence, dictionary methods do not really fit this categorisation.

However, in other cases text-as-data models learn associations between tokens in our
texts and labels from the corpus, and they might do so with the help of some labelled
data.

Unsupervised methods: use modeling assumptions and properties of the texts to
estimate categories and assign documents to them (no labelled data needed)

Semisupervised methods: use both a small amount of labelled data and unlabelled
texts to learn relations between tokens and labels and classify texts (limited amount of
labelled data used)

Supervised methods: trained on labelled texts to learn relations between tokens and
labels and classify texts (labelled training data required)

Unsupervised, semisupervised, and supervised methods

We use these terms to categorise methods according to how much labelled data
(human guidance, basically) is needed to learn relations between tokens and labels
(and ultimately to assign a text to a class)

In the previous session we covered dictionary methods. In dictionaries the association
between tokens and labels is specified in advance, so the model does not do any
learning. Hence, dictionary methods do not really fit this categorisation.

However, in other cases text-as-data models learn associations between tokens in our
texts and labels from the corpus, and they might do so with the help of some labelled
data.

Unsupervised methods: use modeling assumptions and properties of the texts to
estimate categories and assign documents to them (no labelled data needed)

Semisupervised methods: use both a small amount of labelled data and unlabelled
texts to learn relations between tokens and labels and classify texts (limited amount of
labelled data used)

Supervised methods: trained on labelled texts to learn relations between tokens and
labels and classify texts (labelled training data required)

Unsupervised, semisupervised, and supervised methods

We use these terms to categorise methods according to how much labelled data
(human guidance, basically) is needed to learn relations between tokens and labels
(and ultimately to assign a text to a class)

In the previous session we covered dictionary methods. In dictionaries the association
between tokens and labels is specified in advance, so the model does not do any
learning. Hence, dictionary methods do not really fit this categorisation.

However, in other cases text-as-data models learn associations between tokens in our
texts and labels from the corpus, and they might do so with the help of some labelled
data.

Unsupervised methods: use modeling assumptions and properties of the texts to
estimate categories and assign documents to them (no labelled data needed)

Semisupervised methods: use both a small amount of labelled data and unlabelled
texts to learn relations between tokens and labels and classify texts (limited amount of
labelled data used)

Supervised methods: trained on labelled texts to learn relations between tokens and
labels and classify texts (labelled training data required)

Topic models

Topic models are a class of models that assign each text with proportional
membership to all categories (“topics”).

Each text is treated as a mixture of categories (that is why we categorise these
models as “mixed membership models”)

One document could be assigned to just a single category, but it does not need to be
so. This makes results more “flexible” and humanly interpretable

When we talk simply of “topic models”, we generally mean unsupervised models that
assign texts to a set of unlabelled, not predetermined, categories

Topic models

Topic models are a class of models that assign each text with proportional
membership to all categories (“topics”).

Each text is treated as a mixture of categories (that is why we categorise these
models as “mixed membership models”)

One document could be assigned to just a single category, but it does not need to be
so. This makes results more “flexible” and humanly interpretable

When we talk simply of “topic models”, we generally mean unsupervised models that
assign texts to a set of unlabelled, not predetermined, categories

Topic models

Topic models are a class of models that assign each text with proportional
membership to all categories (“topics”).

Each text is treated as a mixture of categories (that is why we categorise these
models as “mixed membership models”)

One document could be assigned to just a single category, but it does not need to be
so. This makes results more “flexible” and humanly interpretable

When we talk simply of “topic models”, we generally mean unsupervised models that
assign texts to a set of unlabelled, not predetermined, categories

Topic models

Topic model with 10 topics implemented on our BBC News 2023 corpus

Distributions of the 10 topics for 20 documents in our corpus

Topic models

Topic model with 10 topics implemented on our BBC News 2023 corpus

Top 20 words, ordered by frequency, for the estimated 10 topics

Latent Dirichlet Allocation (LDA)

The most common topic model is Latent Dirichlet Allocation (LDA) [Blei et al., 2003]

LDA goal is to retrieve the latent distribution of topic proportions across documents,
starting from the texts and a formalisation of how they are generated.

It works as follows:
We observe only the words in our documents

Doc1: white red blue violet
Doc2: president america white house

And set the number of topics we want the model to retrieve

k = 2

Then, a statistical model formalises our understanding of how texts are generated.

Latent Dirichlet Allocation (LDA)

The most common topic model is Latent Dirichlet Allocation (LDA) [Blei et al., 2003]

LDA goal is to retrieve the latent distribution of topic proportions across documents,
starting from the texts and a formalisation of how they are generated.

It works as follows:
We observe only the words in our documents

Doc1: white red blue violet
Doc2: president america white house

And set the number of topics we want the model to retrieve

k = 2

Then, a statistical model formalises our understanding of how texts are generated.

Latent Dirichlet Allocation (LDA)

The most common topic model is Latent Dirichlet Allocation (LDA) [Blei et al., 2003]

LDA goal is to retrieve the latent distribution of topic proportions across documents,
starting from the texts and a formalisation of how they are generated.

It works as follows:
We observe only the words in our documents

Doc1: white red blue violet
Doc2: president america white house

And set the number of topics we want the model to retrieve

k = 2

Then, a statistical model formalises our understanding of how texts are generated.

Latent Dirichlet Allocation (LDA)

The most common topic model is Latent Dirichlet Allocation (LDA) [Blei et al., 2003]

LDA goal is to retrieve the latent distribution of topic proportions across documents,
starting from the texts and a formalisation of how they are generated.

It works as follows:
We observe only the words in our documents

Doc1: white red blue violet
Doc2: president america white house

And set the number of topics we want the model to retrieve
k = 2

Then, a statistical model formalises our understanding of how texts are generated.

Latent Dirichlet Allocation (LDA)

The most common topic model is Latent Dirichlet Allocation (LDA) [Blei et al., 2003]

LDA goal is to retrieve the latent distribution of topic proportions across documents,
starting from the texts and a formalisation of how they are generated.

It works as follows:
We observe only the words in our documents

Doc1: white red blue violet
Doc2: president america white house

And set the number of topics we want the model to retrieve
k = 2

Then, a statistical model formalises our understanding of how texts are generated.

Latent Dirichlet Allocation (LDA)

o α controls the distribution of a topic in a document m, represented by θ.
o β influences how words are distributed across topics k , represented by φ.
o z represents the topic assignment of word w in document m, given our topics.
o However, we observe only w and K , but we are interested in θ and φ

Latent Dirichlet Allocation (LDA)

o α controls the distribution of a topic in a document m, represented by θ.

o β influences how words are distributed across topics k , represented by φ.
o z represents the topic assignment of word w in document m, given our topics.
o However, we observe only w and K , but we are interested in θ and φ

Latent Dirichlet Allocation (LDA)

o α controls the distribution of a topic in a document m, represented by θ.
o β influences how words are distributed across topics k , represented by φ.

o z represents the topic assignment of word w in document m, given our topics.
o However, we observe only w and K , but we are interested in θ and φ

Latent Dirichlet Allocation (LDA)

o α controls the distribution of a topic in a document m, represented by θ.
o β influences how words are distributed across topics k , represented by φ.
o z represents the topic assignment of word w in document m, given our topics.

o However, we observe only w and K , but we are interested in θ and φ

Latent Dirichlet Allocation (LDA)

o α controls the distribution of a topic in a document m, represented by θ.
o β influences how words are distributed across topics k , represented by φ.
o z represents the topic assignment of word w in document m, given our topics.
o However, we observe only w and K , but we are interested in θ and φ

Latent Dirichlet Allocation (LDA)
A Bayesian model tries to reverse engineer the process by guessing different ways of
grouping words into the k topics.

At each step, the model measures how likely is it that the topic assignments could’ve
generated the observed documents, and adapts them so as to increase this likelihood.

Iterations continue until we reach a point where our measure of likelihood/statistical
fit does not improve any more. Model has converged, and α, β, θ, and φ are
computed, given the topic assignments.

Latent Dirichlet Allocation (LDA)

Doc1: white red blue violet
Doc2: president america white house

k = 2

1. LDA produces a random first assignment of words to topics:

Doc1: whitetopic1 redtopic1 bluetopic2 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

2. Assess fit using log-likelihood measure

o How likely is it that these topic assignments could’ve generated the observed
documents?

o Maximize the joint probability of all the words in the documents, topic assignments,
and topic-word and document-topic distributions.

Latent Dirichlet Allocation (LDA)

Doc1: white red blue violet
Doc2: president america white house

k = 2

1. LDA produces a random first assignment of words to topics:
Doc1: whitetopic1 redtopic1 bluetopic2 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

2. Assess fit using log-likelihood measure

o How likely is it that these topic assignments could’ve generated the observed
documents?

o Maximize the joint probability of all the words in the documents, topic assignments,
and topic-word and document-topic distributions.

Latent Dirichlet Allocation (LDA)

Doc1: white red blue violet
Doc2: president america white house

k = 2

1. LDA produces a random first assignment of words to topics:
Doc1: whitetopic1 redtopic1 bluetopic2 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

2. Assess fit using log-likelihood measure
o How likely is it that these topic assignments could’ve generated the observed

documents?
o Maximize the joint probability of all the words in the documents, topic assignments,

and topic-word and document-topic distributions.

Latent Dirichlet Allocation (LDA)

3. LDA samples a new word-topic assignment for our documents:
Doc1: whitetopic1 redtopic1 bluetopic1 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

4. Assess fit once again. Has our measure of fit (log-likelihood) improved?

o Yes: go ahead with the iterations.
o No or not much or we’ve reached the limit of our iterations: model stops.

These are the final topic-word assignments. LDA now computes the parameters of the
topic-word (φ) and document-topic (θ) distributions from the word-topic counts.

[Maier et al., 2018]

Latent Dirichlet Allocation (LDA)

3. LDA samples a new word-topic assignment for our documents:
Doc1: whitetopic1 redtopic1 bluetopic1 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

4. Assess fit once again. Has our measure of fit (log-likelihood) improved?

o Yes: go ahead with the iterations.
o No or not much or we’ve reached the limit of our iterations: model stops.

These are the final topic-word assignments. LDA now computes the parameters of the
topic-word (φ) and document-topic (θ) distributions from the word-topic counts.

[Maier et al., 2018]

Latent Dirichlet Allocation (LDA)

3. LDA samples a new word-topic assignment for our documents:
Doc1: whitetopic1 redtopic1 bluetopic1 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

4. Assess fit once again. Has our measure of fit (log-likelihood) improved?
o Yes: go ahead with the iterations.
o No or not much or we’ve reached the limit of our iterations: model stops.

These are the final topic-word assignments. LDA now computes the parameters of the
topic-word (φ) and document-topic (θ) distributions from the word-topic counts.

[Maier et al., 2018]

Latent Dirichlet Allocation (LDA)

3. LDA samples a new word-topic assignment for our documents:
Doc1: whitetopic1 redtopic1 bluetopic1 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

4. Assess fit once again. Has our measure of fit (log-likelihood) improved?
o Yes: go ahead with the iterations.
o No or not much or we’ve reached the limit of our iterations: model stops.

These are the final topic-word assignments. LDA now computes the parameters of the
topic-word (φ) and document-topic (θ) distributions from the word-topic counts.

[Maier et al., 2018]

Latent Dirichlet Allocation (LDA)

3. LDA samples a new word-topic assignment for our documents:
Doc1: whitetopic1 redtopic1 bluetopic1 violettopic1

Doc2: presidenttopic2 americatopic1 whitetopic2 housetopic2

4. Assess fit once again. Has our measure of fit (log-likelihood) improved?
o Yes: go ahead with the iterations.
o No or not much or we’ve reached the limit of our iterations: model stops.

These are the final topic-word assignments. LDA now computes the parameters of the
topic-word (φ) and document-topic (θ) distributions from the word-topic counts.

[Maier et al., 2018]

Topic models

Topic model with 10 topics implemented on our BBC News 2023 corpus

Top 20 words, ordered by frequency, for the estimated 10 topics

Evaluating LDA models

LDA are unsupervised models and, therefore, require thorough ex post interpretation,
evaluation and validation

Ï Human judgment

o Top N words per topic (φ, frequency/exclusivity (FREX) score)
o Document-topic distributions of “obvious” texts

Ï Evaluation metrics

o Log-Likelihood to inspect model convergence
o Model perplexity to measure how good the model is at predicting unseen (held out)

data
o Semantic coherence to assess how semantically close are the high scoring words in a

topic

Evaluating LDA models

LDA are unsupervised models and, therefore, require thorough ex post interpretation,
evaluation and validation

Ï Human judgment
o Top N words per topic (φ, frequency/exclusivity (FREX) score)
o Document-topic distributions of “obvious” texts

Ï Evaluation metrics

o Log-Likelihood to inspect model convergence
o Model perplexity to measure how good the model is at predicting unseen (held out)

data
o Semantic coherence to assess how semantically close are the high scoring words in a

topic

Evaluating LDA models

LDA are unsupervised models and, therefore, require thorough ex post interpretation,
evaluation and validation

Ï Human judgment
o Top N words per topic (φ, frequency/exclusivity (FREX) score)
o Document-topic distributions of “obvious” texts

Ï Evaluation metrics
o Log-Likelihood to inspect model convergence
o Model perplexity to measure how good the model is at predicting unseen (held out)

data
o Semantic coherence to assess how semantically close are the high scoring words in a

topic

FREX score

The FREX measure is used to rank word, within each topic, according to their
frequency and exclusivity to a topic.

It balances two goals: finding words that are used frequently within a topic, and
words that are distinctive to that topic

Empirically, it is the harmonic mean of two rankings:

o frequency rank (probability of the word under the topic)
o exclusivity rank (probability under a topic vs. other topics)

FREX = 1
(w
frequency +

(1−w)
exclusivity)

where w is just a weight (typically = 0.7) to balance the two rankings

High FREX values indicate words that are both frequent and distinctive to one topic

FREX score

The FREX measure is used to rank word, within each topic, according to their
frequency and exclusivity to a topic.

It balances two goals: finding words that are used frequently within a topic, and
words that are distinctive to that topic

Empirically, it is the harmonic mean of two rankings:
o frequency rank (probability of the word under the topic)
o exclusivity rank (probability under a topic vs. other topics)

FREX = 1
(w
frequency +

(1−w)
exclusivity)

where w is just a weight (typically = 0.7) to balance the two rankings

High FREX values indicate words that are both frequent and distinctive to one topic

FREX score

The FREX measure is used to rank word, within each topic, according to their
frequency and exclusivity to a topic.

It balances two goals: finding words that are used frequently within a topic, and
words that are distinctive to that topic

Empirically, it is the harmonic mean of two rankings:
o frequency rank (probability of the word under the topic)
o exclusivity rank (probability under a topic vs. other topics)

FREX = 1
(w
frequency +

(1−w)
exclusivity)

where w is just a weight (typically = 0.7) to balance the two rankings

High FREX values indicate words that are both frequent and distinctive to one topic

Model perplexity

Model perplexity is a measure used to evaluate how well a topic model predicts the
topic-document distribution in a new sample.

Roughly speaking, perplexity is measured by running an LDA model to estimate the
various parameters describing the data-generating process, and then assessing how
likely are the words in the document given the estimated parameters.

Formally, it is defined as the exponential of the negative average log-likelihood per
word in the documents.

Low perplexity values indicate better fit. However,

o it is sensitive to the size of the vocabulary, hence you should be careful when using it
for model comparison

o it does not say much about topic quality or human interpretability

Model perplexity

Model perplexity is a measure used to evaluate how well a topic model predicts the
topic-document distribution in a new sample.

Roughly speaking, perplexity is measured by running an LDA model to estimate the
various parameters describing the data-generating process, and then assessing how
likely are the words in the document given the estimated parameters.

Formally, it is defined as the exponential of the negative average log-likelihood per
word in the documents.

Low perplexity values indicate better fit. However,

o it is sensitive to the size of the vocabulary, hence you should be careful when using it
for model comparison

o it does not say much about topic quality or human interpretability

Model perplexity

Model perplexity is a measure used to evaluate how well a topic model predicts the
topic-document distribution in a new sample.

Roughly speaking, perplexity is measured by running an LDA model to estimate the
various parameters describing the data-generating process, and then assessing how
likely are the words in the document given the estimated parameters.

Formally, it is defined as the exponential of the negative average log-likelihood per
word in the documents.

Low perplexity values indicate better fit. However,
o it is sensitive to the size of the vocabulary, hence you should be careful when using it

for model comparison
o it does not say much about topic quality or human interpretability

Semantic coherence

Semantic coherence measures the semantic similarity between high scoring words in
each topic. Conceptually, it assesses whether the words making up a topic are really
about similar things.

Therefore, it can distinguish interpretable topics from those that are just a statistical
artefact. In this sense, tries to capture topic-quality beyond a statistical fit like
perplexity

In practice, it looks at how often the top words in a topic co-occur in the documents
to approximate their semantic similarity, and then get a measure of overall topic
coherence

High coherence values indicate good topics. Also:

o it is way less sensitive than perplexity to changes in the vocabulary, so more useful for
model comparison

o average topic coherence is generally used as metric to evaluate different LDA models
(e.g., by plotting coherence vs k)

Semantic coherence

Semantic coherence measures the semantic similarity between high scoring words in
each topic. Conceptually, it assesses whether the words making up a topic are really
about similar things.

Therefore, it can distinguish interpretable topics from those that are just a statistical
artefact. In this sense, tries to capture topic-quality beyond a statistical fit like
perplexity

In practice, it looks at how often the top words in a topic co-occur in the documents
to approximate their semantic similarity, and then get a measure of overall topic
coherence

High coherence values indicate good topics. Also:

o it is way less sensitive than perplexity to changes in the vocabulary, so more useful for
model comparison

o average topic coherence is generally used as metric to evaluate different LDA models
(e.g., by plotting coherence vs k)

Semantic coherence

Semantic coherence measures the semantic similarity between high scoring words in
each topic. Conceptually, it assesses whether the words making up a topic are really
about similar things.

Therefore, it can distinguish interpretable topics from those that are just a statistical
artefact. In this sense, tries to capture topic-quality beyond a statistical fit like
perplexity

In practice, it looks at how often the top words in a topic co-occur in the documents
to approximate their semantic similarity, and then get a measure of overall topic
coherence

High coherence values indicate good topics. Also:
o it is way less sensitive than perplexity to changes in the vocabulary, so more useful for

model comparison
o average topic coherence is generally used as metric to evaluate different LDA models

(e.g., by plotting coherence vs k)

We will be mostly relying on the textmineR package:

o FitLdaModel()

o other functions for post-estimation

We will also keep using numerous quanteda functions
introduced in the previous session.

When lost, cry for help()!

https://cran.r-project.org/web/packages/textmineR/textmineR.pdf

Structural Topic Models (STM)

In LDA setting, all documents are assumed to come from the same data-generating
process: all documents’ mixture of topics is drawn from the same distribution

However, there cases where topic proportions or topic content are influenced by some
document-level factors:

o e.g., news articles from 2020 talk more about “pandemics” than articles from 2010
(time influences topic prevalence)

o e.g., newspapers with different audiences use different words to talk about the same
topics (“cost of living” vs “inflation”) (newspaper type influences topic content)

Structural Topic Models (STM) [Roberts et al., 2016] can incorporate the
information from document-level metadata to better model topic prevalence and
content, which are allowed to vary based on document’s characteristics

Structural Topic Models (STM)

In LDA setting, all documents are assumed to come from the same data-generating
process: all documents’ mixture of topics is drawn from the same distribution

However, there cases where topic proportions or topic content are influenced by some
document-level factors:

o e.g., news articles from 2020 talk more about “pandemics” than articles from 2010
(time influences topic prevalence)

o e.g., newspapers with different audiences use different words to talk about the same
topics (“cost of living” vs “inflation”) (newspaper type influences topic content)

Structural Topic Models (STM) [Roberts et al., 2016] can incorporate the
information from document-level metadata to better model topic prevalence and
content, which are allowed to vary based on document’s characteristics

Structural Topic Models (STM)

[Roberts et al., 2014]

Structural Topic Models (STM)

[Moschella et al., 2020]

Structural Topic Models vs LDA

Whether you should prefer STM over LDA depends on your research goals and on the
nature of your data

STM can be preferable if

o You have interesting document-level metadata

o You want to do hypothesis testing or regression analysis on topics

o You want to model changes over time or across groups

LDA is the way to go if

o You do not have metadata or you are just not interested in them

o You do not want to make assumptions on topics based on document metadata

o Your corpus is very large and you value speed over topic variation by metadata

Structural Topic Models vs LDA

Whether you should prefer STM over LDA depends on your research goals and on the
nature of your data

STM can be preferable if

o You have interesting document-level metadata

o You want to do hypothesis testing or regression analysis on topics

o You want to model changes over time or across groups

LDA is the way to go if

o You do not have metadata or you are just not interested in them

o You do not want to make assumptions on topics based on document metadata

o Your corpus is very large and you value speed over topic variation by metadata

Structural Topic Models vs LDA

Whether you should prefer STM over LDA depends on your research goals and on the
nature of your data

STM can be preferable if

o You have interesting document-level metadata

o You want to do hypothesis testing or regression analysis on topics

o You want to model changes over time or across groups

LDA is the way to go if

o You do not have metadata or you are just not interested in them

o You do not want to make assumptions on topics based on document metadata

o Your corpus is very large and you value speed over topic variation by metadata

Semisupervised classification

Keyword-Assisted Topic Models (KeyATM)

There are topic models that try to combine the features of dictionary methods
(having keywords to guide topic-word distributions) and unsupervised methods
(learning from word co-occurrence the topic-document distributions)

Because of the use of keywords, such models are called semi-supervised

One example are Keyword-Assisted Topic Models (KeyATM) [Eshima et al., 2024]

However, there are other implementations that do very similar things (e.g., Seeded
LDA [Watanabe and Zhou, 2020])

Keyword-Assisted Topic Models (KeyATM)

There are topic models that try to combine the features of dictionary methods
(having keywords to guide topic-word distributions) and unsupervised methods
(learning from word co-occurrence the topic-document distributions)

Because of the use of keywords, such models are called semi-supervised

One example are Keyword-Assisted Topic Models (KeyATM) [Eshima et al., 2024]

However, there are other implementations that do very similar things (e.g., Seeded
LDA [Watanabe and Zhou, 2020])

Keyword-Assisted Topic Models (KeyATM)

[Eshima et al., 2024]

Keyword-Assisted Topic Models (KeyATM)

[Eshima et al., 2024]

Keyword-Assisted Topic Models (KeyATM)

KeyATM enhances traditional topic modeling (like LDA) and STM by allowing users
to provide seed words (keywords) for some topics.

The model then:

o Softly biases specific topics to prefer those keywords - but does not fix them (keywords
could end up in other topics)

o Allows other words to join these topics based on co-occurrence with the keywords

o Other topics can be left unguided and are discovered in a fully unsupervised way

o Optionally, KeyATM can model how covariates (e.g., author, time) influence topic
prevalence - like in STM

Therefore, compared to totally unsupervised models (e.g., LDA or STM), KeyATMs
seek to improve topic relevance and interpretability (by pre-determining some topics
of interest), whilst allowing for some flexibility and ability to “discover” topics.

Keyword-Assisted Topic Models (KeyATM)

KeyATM enhances traditional topic modeling (like LDA) and STM by allowing users
to provide seed words (keywords) for some topics.
The model then:

o Softly biases specific topics to prefer those keywords - but does not fix them (keywords
could end up in other topics)

o Allows other words to join these topics based on co-occurrence with the keywords

o Other topics can be left unguided and are discovered in a fully unsupervised way

o Optionally, KeyATM can model how covariates (e.g., author, time) influence topic
prevalence - like in STM

Therefore, compared to totally unsupervised models (e.g., LDA or STM), KeyATMs
seek to improve topic relevance and interpretability (by pre-determining some topics
of interest), whilst allowing for some flexibility and ability to “discover” topics.

Keyword-Assisted Topic Models (KeyATM)

KeyATM enhances traditional topic modeling (like LDA) and STM by allowing users
to provide seed words (keywords) for some topics.
The model then:

o Softly biases specific topics to prefer those keywords - but does not fix them (keywords
could end up in other topics)

o Allows other words to join these topics based on co-occurrence with the keywords

o Other topics can be left unguided and are discovered in a fully unsupervised way

o Optionally, KeyATM can model how covariates (e.g., author, time) influence topic
prevalence - like in STM

Therefore, compared to totally unsupervised models (e.g., LDA or STM), KeyATMs
seek to improve topic relevance and interpretability (by pre-determining some topics
of interest), whilst allowing for some flexibility and ability to “discover” topics.

Evaluating KeyATM models

KeyATM, like other topic models, can be evaluated by using similar measures
employed for LDA models (e.g., FREX scores, and semantic coherence)

However, as they map texts into pre-determined categories, other types of validity
assessments are possible as well (see [Ying et al., 2022])

Evaluating KeyATM models

KeyATM, like other topic models, can be evaluated by using similar measures
employed for LDA models (e.g., FREX scores, and semantic coherence)

However, as they map texts into pre-determined categories, other types of validity
assessments are possible as well (see [Ying et al., 2022])

Evaluating KeyATM models

“Bespoke approaches” to validate topic models [Ying et al., 2022] are tailored to the
specificity of the study under consideration

However, they share the overall aim of testing a measure against substantive
expectations

Examples could be

o evaluate “predictive validity” of topics by checking that topics are responsive to external
events

o convergent validity by showing that topics align with other measures

o use of “gold-standard” measures for comparison

Evaluating KeyATM models

“Bespoke approaches” to validate topic models [Ying et al., 2022] are tailored to the
specificity of the study under consideration

However, they share the overall aim of testing a measure against substantive
expectations

Examples could be
o evaluate “predictive validity” of topics by checking that topics are responsive to external

events

o convergent validity by showing that topics align with other measures

o use of “gold-standard” measures for comparison

Use of “gold-standard” measures

Generally, this takes the form of a comparison with human coding

o Use of data annotated in the same categories by other scholars

o Use of data annotated by yourself/your team (see Grimmer et al. (2022, Chapter 18
“Coding a training set”)

o Crowdcoded annotated data (but is still a viable option?)

Use of “gold-standard” measures

Generally, this takes the form of a comparison with human coding

o Use of data annotated in the same categories by other scholars

o Use of data annotated by yourself/your team (see Grimmer et al. (2022, Chapter 18
“Coding a training set”)

o Crowdcoded annotated data (but is still a viable option?)

Use of “gold-standard” measures

Validation with annotated data

Confusion matrix

o a KxK cross-tabulation of predicted classes and gold-standard classes

Validation with annotated data

Confusion matrix
o a KxK cross-tabulation of predicted classes and gold-standard classes

Accuracy

o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

Precision (for category k)

o Number of instances correctly assigned to k, over the total number of instances
assigned to k

o How good is my model at assigning instances to a category?

Recall (for category k) (sometimes called Sensitivity)

o Number of instances correctly assigned to k, over the total number of instances that
are in category k

o How good is my model at retrieving instances from a category?

Specificity (for category k)

o Number of instances correctly not assigned to k, over the total number of instances
that are not in category k

o How good is my model at identifying what does not belong to class k?

Validation with annotated data

Confusion matrix
o a KxK cross-tabulation of predicted classes and gold-standard classes

Accuracy
o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

Precision (for category k)

o Number of instances correctly assigned to k, over the total number of instances
assigned to k

o How good is my model at assigning instances to a category?

Recall (for category k) (sometimes called Sensitivity)

o Number of instances correctly assigned to k, over the total number of instances that
are in category k

o How good is my model at retrieving instances from a category?

Specificity (for category k)

o Number of instances correctly not assigned to k, over the total number of instances
that are not in category k

o How good is my model at identifying what does not belong to class k?

Validation with annotated data

Confusion matrix
o a KxK cross-tabulation of predicted classes and gold-standard classes

Accuracy
o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

Precision (for category k)
o Number of instances correctly assigned to k, over the total number of instances

assigned to k
o How good is my model at assigning instances to a category?

Recall (for category k) (sometimes called Sensitivity)

o Number of instances correctly assigned to k, over the total number of instances that
are in category k

o How good is my model at retrieving instances from a category?

Specificity (for category k)

o Number of instances correctly not assigned to k, over the total number of instances
that are not in category k

o How good is my model at identifying what does not belong to class k?

Validation with annotated data

Confusion matrix
o a KxK cross-tabulation of predicted classes and gold-standard classes

Accuracy
o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

Precision (for category k)
o Number of instances correctly assigned to k, over the total number of instances

assigned to k
o How good is my model at assigning instances to a category?

Recall (for category k) (sometimes called Sensitivity)
o Number of instances correctly assigned to k, over the total number of instances that

are in category k
o How good is my model at retrieving instances from a category?

Specificity (for category k)

o Number of instances correctly not assigned to k, over the total number of instances
that are not in category k

o How good is my model at identifying what does not belong to class k?

Validation with annotated data

Confusion matrix
o a KxK cross-tabulation of predicted classes and gold-standard classes

Accuracy
o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

Precision (for category k)
o Number of instances correctly assigned to k, over the total number of instances

assigned to k
o How good is my model at assigning instances to a category?

Recall (for category k) (sometimes called Sensitivity)
o Number of instances correctly assigned to k, over the total number of instances that

are in category k
o How good is my model at retrieving instances from a category?

Specificity (for category k)
o Number of instances correctly not assigned to k, over the total number of instances

that are not in category k
o How good is my model at identifying what does not belong to class k?

Validation with annotated data

Accuracy

o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

o Correct = 700+8,300+300= 9,300; Total = 10,000
o Accuracy = 9,300/10,000= 0.93

Validation with annotated data

Accuracy

o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

o Correct = 700+8,300+300= 9,300; Total = 10,000
o Accuracy = 9,300/10,000= 0.93

Validation with annotated data
Precision (for category k)

o Number of instances correctly assigned to k, over the total number of instances
assigned to k

o How good is my model at assigning instances to a category?

o Correct = 8,300; Total = 300+8,300+100= 8,700
o Precision = 8,300/8700= 0.95

Validation with annotated data
Precision (for category k)

o Number of instances correctly assigned to k, over the total number of instances
assigned to k

o How good is my model at assigning instances to a category?

o Correct = 8,300; Total = 300+8,300+100= 8,700
o Precision = 8,300/8700= 0.95

Validation with annotated data
Recall (for category k)

o Number of instances correctly assigned to k, over the total number of instances that
are in category k

o How good is my model at retrieving instances from a category?

o Correct = 8,300; Total = 200+8,300+100
o Recall = 8,300/8,600= 0.96

Validation with annotated data
Recall (for category k)

o Number of instances correctly assigned to k, over the total number of instances that
are in category k

o How good is my model at retrieving instances from a category?

o Correct = 8,300; Total = 200+8,300+100
o Recall = 8,300/8,600= 0.96

Validation with annotated data
Specificity (for category k)

o Number of instances correctly not assigned to k, over the total number of instances
that are not in category k

o How good is my model at identifying what does not belong to class k?

o Correct = 700+300= 1,000; Total = 700+300+100+300= 1,400
o Specificity = 700/1,400= 0.5

Validation with annotated data
Specificity (for category k)

o Number of instances correctly not assigned to k, over the total number of instances
that are not in category k

o How good is my model at identifying what does not belong to class k?

o Correct = 700+300= 1,000; Total = 700+300+100+300= 1,400
o Specificity = 700/1,400= 0.5

Validation with annotated data

You can compute average precision, recall, or specificity measures by averaging them
across K

o Precision (k = 1) = 700/900= 0.78

Validation with annotated data

You can compute average precision, recall, or specificity measures by averaging them
across K

o Precision (k = 1) = 700/900= 0.78

Validation with annotated data

You can compute average precision, recall, or specificity measures by averaging them
across K

o Precision (k = 1) = 700/900= 0.78
o Precision (k = 2) = 8,300/8,700= 0.95

Validation with annotated data

You can compute average precision, recall, or specificity measures by averaging them
across K

o Precision (k = 1) = 700/900= 0.78
o Precision (k = 2) = 8,300/8,700= 0.95
o Precision (k = 3) = 300/400= 0.75

o Average Precision = (0.78+0.95+0.75)/3= 0.83

Validation with annotated data

You can compute average precision, recall, or specificity measures by averaging them
across K

o Precision (k = 1) = 700/900= 0.78
o Precision (k = 2) = 8,300/8,700= 0.95
o Precision (k = 3) = 300/400= 0.75
o Average Precision = (0.78+0.95+0.75)/3= 0.83

We will be mostly relying on the keyATM package:

o read_keywords()

o keyATM_read()

o keyATM()

o other functions for post-estimation

We will keep using numerous quanteda functions. The code
also contains an example of structural topic model using the
stm package

When lost, cry for help()!

https://cloud.r-project.org/web/packages/keyATM/keyATM.pdf

Supervised classification

Supervised methods for classification

Supervised learning methods use statistical models to approximate the mapping
between examples in a coded data and the labels assigned to them

Basically, they rely on examples of texts assigned to the categories of interest by
coders, and “learn” the relationship between tokens in these texts and the labels
assigned to them

For this reason, we say that these models are “trained” on labelled data

Supervised methods for classification

Once the model learns how tokens are mapped into labels/categories, it uses this
knowledge to assign new texts to the categories based on the tokens in the new text.

Supervised methods for classification

There are a lot of options in terms of machine learning models that can perform
supervised classification

Supervised methods for classification

Beyond the complexity of the various algorithms, there is a core strategy:

1. Define a set of categories

2. Use those categories to label a subset of texts

3. Train a machine learning algorithm to make predictions on new texts

As long as the machine learning algorithm predicts accurately in the kind of
documents you want to analyse, it doesn’t much matter what it is!

Supervised methods for classification

Beyond the complexity of the various algorithms, there is a core strategy:

1. Define a set of categories

2. Use those categories to label a subset of texts

3. Train a machine learning algorithm to make predictions on new texts

As long as the machine learning algorithm predicts accurately in the kind of
documents you want to analyse, it doesn’t much matter what it is!

Supervised methods for classification

Beyond the complexity of the various algorithms, there is a core strategy:

1. Define a set of categories

2. Use those categories to label a subset of texts

3. Train a machine learning algorithm to make predictions on new texts

As long as the machine learning algorithm predicts accurately in the kind of
documents you want to analyse, it doesn’t much matter what it is!

Supervised methods for classification

Beyond the complexity of the various algorithms, there is a core strategy:

1. Define a set of categories

2. Use those categories to label a subset of texts

3. Train a machine learning algorithm to make predictions on new texts

As long as the machine learning algorithm predicts accurately in the kind of
documents you want to analyse, it doesn’t much matter what it is!

Supervised methods for classification

Beyond the complexity of the various algorithms, there is a core strategy:

1. Define a set of categories

2. Use those categories to label a subset of texts

3. Train a machine learning algorithm to make predictions on new texts

As long as the machine learning algorithm predicts accurately in the kind of
documents you want to analyse, it doesn’t much matter what it is!

Supervised methods for classification

Beyond the complexity of the various algorithms, there is a core strategy:

1. Define a set of categories ← like in semi-supervised methods

2. Use those categories to label a subset of texts ← new!

3. Train a machine learning algorithm to make predictions on new texts ← new!

As long as the machine learning algorithm predicts accurately in the kind of
documents you want to analyse, it doesn’t much matter what it is!

Random forest algorithm

The random forest (RF) algorithm is a supervised method that builds on the concept
of decision tree learning

A decision tree is a flowchart-like structure representing a decision role of the kind if
[...] and [...] then [outcome]

o In the context of supervised text classification, you can think of the conditions as word
frequencies, and the outcome as the assignment of the text to a class

Random forest algorithms “grows” many different decision trees, and then average
their predictions to get the final classification

o They are an “ensable” method

o By growing multiple and slightly different trees, RF algorithms can make more robust
predictions than by relying just on one tree

Random forest algorithm

The random forest (RF) algorithm is a supervised method that builds on the concept
of decision tree learning

A decision tree is a flowchart-like structure representing a decision role of the kind if
[...] and [...] then [outcome]

o In the context of supervised text classification, you can think of the conditions as word
frequencies, and the outcome as the assignment of the text to a class

Random forest algorithms “grows” many different decision trees, and then average
their predictions to get the final classification

o They are an “ensable” method

o By growing multiple and slightly different trees, RF algorithms can make more robust
predictions than by relying just on one tree

Random forest algorithm

The random forest (RF) algorithm is a supervised method that builds on the concept
of decision tree learning

A decision tree is a flowchart-like structure representing a decision role of the kind if
[...] and [...] then [outcome]

o In the context of supervised text classification, you can think of the conditions as word
frequencies, and the outcome as the assignment of the text to a class

Random forest algorithms “grows” many different decision trees, and then average
their predictions to get the final classification

o They are an “ensable” method

o By growing multiple and slightly different trees, RF algorithms can make more robust
predictions than by relying just on one tree

Random forest algorithm

The random forest (RF) algorithm is a supervised method that builds on the concept
of decision tree learning

A decision tree is a flowchart-like structure representing a decision role of the kind if
[...] and [...] then [outcome]

o In the context of supervised text classification, you can think of the conditions as word
frequencies, and the outcome as the assignment of the text to a class

Random forest algorithms “grows” many different decision trees, and then average
their predictions to get the final classification

o They are an “ensable” method

o By growing multiple and slightly different trees, RF algorithms can make more robust
predictions than by relying just on one tree

Random forest algorithm

The random forest (RF) algorithm is a supervised method that builds on the concept
of decision tree learning

A decision tree is a flowchart-like structure representing a decision role of the kind if
[...] and [...] then [outcome]

o In the context of supervised text classification, you can think of the conditions as word
frequencies, and the outcome as the assignment of the text to a class

Random forest algorithms “grows” many different decision trees, and then average
their predictions to get the final classification

o They are an “ensable” method

o By growing multiple and slightly different trees, RF algorithms can make more robust
predictions than by relying just on one tree

Random forest algorithm

The random forest (RF) algorithm is a supervised method that builds on the concept
of decision tree learning

A decision tree is a flowchart-like structure representing a decision role of the kind if
[...] and [...] then [outcome]

o In the context of supervised text classification, you can think of the conditions as word
frequencies, and the outcome as the assignment of the text to a class

Random forest algorithms “grows” many different decision trees, and then average
their predictions to get the final classification

o They are an “ensable” method

o By growing multiple and slightly different trees, RF algorithms can make more robust
predictions than by relying just on one tree

Random forest algorithm

An annotated dfm is used to train an algorithm to learn how tokens map into labels.

Text Features/Tokens Label
market party labour budget

doc1 2 2 13 0 politics
doc2 3 0 0 7 economy
doc3 2 5 0 0 politics
doc4 3 0 1 0 economy
doc5 7 2 0 0 economy

...
...

docn−4 1 7 4 0 politics
docn−3 7 2 0 0 economy
docn−2 6 1 5 0 economy
docn−1 4 10 0 0 politics
docn 4 3 9 5 economy

Random forest algorithm

The training data is used in a random process to generate many decision trees, each
one making a prediction

Ï Sample the original data to get an unique training dataset for a tree

Features/Tokens Label
market party labour budget

2 2 13 0 politics
3 0 0 7 economy
2 5 0 0 politics
3 0 1 0 economy
7 2 0 0 economy
1 7 4 0 politics
7 2 0 0 economy
6 1 5 0 economy
4 10 0 0 politics
4 3 9 5 economy

Random forest algorithm

The training data is used in a random process to generate many decision trees, each
one making a prediction

Ï Randomly sample a number of features to split the data
Ï Among those feature, select the one that splits the data best

market

economy

economy

economy

≤ 4> 4

economy

economy

economy

economy

politics

politics

politics

politics

party

> 3
≤ 3

politics

politics

politics

politics economy
economy

economy
economy

economy
economy

Ï Compare nodes “purity” using a measure called entropy, which basically tells us how
much information is needed in a node to classify an object with certainty

Ï Select feature leading to nodes with lowest entropy, and split

Random forest algorithm

The training data is used in a random process to generate many decision trees, each
one making a prediction

Ï Randomly sample a number of features to split the data
Ï Among those feature, select the one that splits the data best

market

economy

economy

economy

≤ 4> 4

economy

economy

economy

economy

politics

politics

politics

politics

party

> 3
≤ 3

politics

politics

politics

politics economy
economy

economy
economy

economy
economy

Ï Compare nodes “purity” using a measure called entropy, which basically tells us how
much information is needed in a node to classify an object with certainty

Ï Select feature leading to nodes with lowest entropy, and split

Random forest algorithm

The training data is used in a random process to generate many decision trees, each
one making a prediction

Ï Randomly sample a number of features to split the data
Ï Among those feature, select the one that splits the data best

market

economy

economy

economy

≤ 4> 4

economy

economy

economy

economy

politics

politics

politics

politics

party

> 3
≤ 3

politics

politics

politics

politics economy
economy

economy
economy

economy
economy

Ï Compare nodes “purity” using a measure called entropy, which basically tells us how
much information is needed in a node to classify an object with certainty

Ï Select feature leading to nodes with lowest entropy, and split

Random forest algorithm

The training data is used in a random process to generate many decision trees, each
one making a prediction

Ï Randomly sample a number of features to split the data
Ï Among those feature, select the one that splits the data best

market

economy

economy

economy

≤ 4> 4

economy

economy

economy

economy

politics

politics

politics

politics

party

> 3
≤ 3

politics

politics

politics

politics economy
economy

economy
economy

economy
economy

Ï Compare nodes “purity” using a measure called entropy, which basically tells us how
much information is needed in a node to classify an object with certainty

Ï Select feature leading to nodes with lowest entropy, and split

Random forest algorithm

Go ahead with further splits until the tree is fully constructed

Ï Do the same assessment of features to split the data further

party

> 3 ≤ 3

politics
politics

politics ?

Random forest algorithm

Go ahead with further splits until the tree is fully constructed
Ï Do the same assessment of features to split the data further

party

> 3 ≤ 3

politics
politics

politics ?

Random forest algorithm

Go ahead with further splits until the tree is fully constructed
Ï Do the same assessment of features to split the data further

Random forest algorithm

Once the decision tree is “fully grown”, it has learned how tokens maps into labels

It can now be used to make predictions on new texts

Ï Imagine we want to label a text containing the tokens “market”, “party”, “labour”, and
“budget” appearing 1, 3, 9, and 0 times.

Ï The tree has learned that if “party” < 3 and “labour” < 12 then → “economy”

In a RF model, many different such trees are grown

Each one makes its own prediction for a new text

Then, the label “voted” by most trees is the final model prediction

Random forest algorithm

Once the decision tree is “fully grown”, it has learned how tokens maps into labels

It can now be used to make predictions on new texts
Ï Imagine we want to label a text containing the tokens “market”, “party”, “labour”, and

“budget” appearing 1, 3, 9, and 0 times.

Ï The tree has learned that if “party” < 3 and “labour” < 12 then → “economy”

In a RF model, many different such trees are grown

Each one makes its own prediction for a new text

Then, the label “voted” by most trees is the final model prediction

Random forest algorithm

Once the decision tree is “fully grown”, it has learned how tokens maps into labels

It can now be used to make predictions on new texts
Ï Imagine we want to label a text containing the tokens “market”, “party”, “labour”, and

“budget” appearing 1, 3, 9, and 0 times.
Ï The tree has learned that if “party” < 3 and “labour” < 12 then → “economy”

In a RF model, many different such trees are grown

Each one makes its own prediction for a new text

Then, the label “voted” by most trees is the final model prediction

Random forest algorithm

Once the decision tree is “fully grown”, it has learned how tokens maps into labels

It can now be used to make predictions on new texts
Ï Imagine we want to label a text containing the tokens “market”, “party”, “labour”, and

“budget” appearing 1, 3, 9, and 0 times.
Ï The tree has learned that if “party” < 3 and “labour” < 12 then → “economy”

In a RF model, many different such trees are grown

Each one makes its own prediction for a new text

Then, the label “voted” by most trees is the final model prediction

Random forest algorithm

Once the decision tree is “fully grown”, it has learned how tokens maps into labels

It can now be used to make predictions on new texts
Ï Imagine we want to label a text containing the tokens “market”, “party”, “labour”, and

“budget” appearing 1, 3, 9, and 0 times.
Ï The tree has learned that if “party” < 3 and “labour” < 12 then → “economy”

In a RF model, many different such trees are grown

Each one makes its own prediction for a new text

Then, the label “voted” by most trees is the final model prediction

Random forest algorithm

Once the decision tree is “fully grown”, it has learned how tokens maps into labels

It can now be used to make predictions on new texts
Ï Imagine we want to label a text containing the tokens “market”, “party”, “labour”, and

“budget” appearing 1, 3, 9, and 0 times.
Ï The tree has learned that if “party” < 3 and “labour” < 12 then → “economy”

In a RF model, many different such trees are grown

Each one makes its own prediction for a new text

Then, the label “voted” by most trees is the final model prediction

How to grow a random forest

The structure and behaviour of machine learning models is governed by quantities
called “parameters”

Each type of model has its own set of parameters

In the case of random forest algorithms, the main parameters are those determining:

o how many trees are there?

o how many features to evaluate at each split?

o when to stop growing a tree?

Experience may provide us with “rules of thumb” on acceptable parameter values

Hyperparameter tuning is useful in finding optimal parameter values

Model tuning ̸= Model training

How to grow a random forest

The structure and behaviour of machine learning models is governed by quantities
called “parameters”

Each type of model has its own set of parameters

In the case of random forest algorithms, the main parameters are those determining:

o how many trees are there?

o how many features to evaluate at each split?

o when to stop growing a tree?

Experience may provide us with “rules of thumb” on acceptable parameter values

Hyperparameter tuning is useful in finding optimal parameter values

Model tuning ̸= Model training

How to grow a random forest

The structure and behaviour of machine learning models is governed by quantities
called “parameters”

Each type of model has its own set of parameters

In the case of random forest algorithms, the main parameters are those determining:

o how many trees are there?

o how many features to evaluate at each split?

o when to stop growing a tree?

Experience may provide us with “rules of thumb” on acceptable parameter values

Hyperparameter tuning is useful in finding optimal parameter values

Model tuning ̸= Model training

How to grow a random forest

The structure and behaviour of machine learning models is governed by quantities
called “parameters”

Each type of model has its own set of parameters

In the case of random forest algorithms, the main parameters are those determining:

o how many trees are there?

o how many features to evaluate at each split?

o when to stop growing a tree?

Experience may provide us with “rules of thumb” on acceptable parameter values

Hyperparameter tuning is useful in finding optimal parameter values

Model tuning ̸= Model training

How to grow a random forest

The structure and behaviour of machine learning models is governed by quantities
called “parameters”

Each type of model has its own set of parameters

In the case of random forest algorithms, the main parameters are those determining:

o how many trees are there?

o how many features to evaluate at each split?

o when to stop growing a tree?

Experience may provide us with “rules of thumb” on acceptable parameter values

Hyperparameter tuning is useful in finding optimal parameter values

Model tuning ̸= Model training

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance

4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance

4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance

4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance

4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance

4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance
4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance
4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Tuning a machine learning algorithm

Tuning means finding optimal parameter values for training the model

1. Decide which parameters can/needs to be tuned (this depends on the model and on
the importance of the parameter for classification performance)

2. Select the possible parameter values that you want to try for each parameter

3. Split your data in train, validation and test set (alternatively, you can use
cross-validation during tuning. It is important that all final evaluations are made on the
test set)

4. Estimate different models, one for each combination of parameter values, and assess
their performance
4.1 Fit the model on the training data

4.2 Assess model performance on a validation set

4.3 Select parameter values used for the best performing model

5. Test model on test set to simulate real world scenario (validation set influences the
model as it is used for tuning, hence it is not anymore a credible benchmark)

6. If test performance is satisfactory and no additional tuning is needed, you can train the
model once again on the full labelled data (with the parameter values decided after
tuning) and use it to label unseen data

Validation

Validation in the context of supervised learning

In supervised classification tasks, performing a train-test split is essential to evaluate
the model’s ability to generalize to unseen data

The dataset is divided into a training set (used to fit the model) and a test set (used
to assess performance)

Model tuning might require a further split in a validation set, or techniques like k-fold
cross-validation

All this is to avoid “data leakage” and ensure that the model performs well not only
on the training data but also on new, real-world examples (avoiding “over-fitting”)

Validation in the context of supervised learning

In supervised classification tasks, performing a train-test split is essential to evaluate
the model’s ability to generalize to unseen data

The dataset is divided into a training set (used to fit the model) and a test set (used
to assess performance)

Model tuning might require a further split in a validation set, or techniques like k-fold
cross-validation

All this is to avoid “data leakage” and ensure that the model performs well not only
on the training data but also on new, real-world examples (avoiding “over-fitting”)

Validation in the context of supervised learning

In supervised classification tasks, performing a train-test split is essential to evaluate
the model’s ability to generalize to unseen data

The dataset is divided into a training set (used to fit the model) and a test set (used
to assess performance)

Model tuning might require a further split in a validation set, or techniques like k-fold
cross-validation

All this is to avoid “data leakage” and ensure that the model performs well not only
on the training data but also on new, real-world examples (avoiding “over-fitting”)

Validation in the context of supervised learning

In supervised classification tasks, performing a train-test split is essential to evaluate
the model’s ability to generalize to unseen data

The dataset is divided into a training set (used to fit the model) and a test set (used
to assess performance)

Model tuning might require a further split in a validation set, or techniques like k-fold
cross-validation

All this is to avoid “data leakage” and ensure that the model performs well not only
on the training data but also on new, real-world examples (avoiding “over-fitting”)

(More on) validation with annotated data

Confusion matrix
o a KxK cross-tabulation of predicted classes and gold-standard classes

Accuracy
o The proportion of instances that have been correctly classified
o How good is my classification model, overall?

Precision (for category k)
o Number of instances correctly assigned to k, over the total number of instances

assigned to k
o How good is my model at assigning instances to a category?

Recall (for category k) (sometimes called Sensitivity)
o Number of instances correctly assigned to k, over the total number of instances that

are in category k
o How good is my model at retrieving instances from a category?

Specificity (for category k)
o Number of instances correctly not assigned to k, over the total number of instances

that are not in category k
o How good is my model at identifying what does not belong to class k?

(More on) validation with annotated data

In some cases the accuracy measure is too basic and can give us some biased
evaluation of classification performance

Accuracy can be problematic in case of multi-class classification tasks, and definitely
to avoid in case of class imbalance

Other measures are more robust and, therefore, preferable. Most of them try to
combine the information coming from precision and recall metrics into one score

Balanced Accuracy

o It is essentially the average of recall across classes
o It tend to converge to the accuracy measure if the dataset is balanced

F1-Score

o It is the harmonic mean of precision and recall
o Hence, it is good to spot weak points of a prediction algorithm

Ï Grandini et al. 2020 provide a super useful review of such measures (see reading list)

https://www.dropbox.com/scl/fi/8nw96h6ydl0xhhjo1wgab/readings-and-materials.docx?rlkey=tli50ju5h9k9usmqca2qipjz5&e=1&st=d85pod0v&dl=0

(More on) validation with annotated data

In some cases the accuracy measure is too basic and can give us some biased
evaluation of classification performance

Accuracy can be problematic in case of multi-class classification tasks, and definitely
to avoid in case of class imbalance

Other measures are more robust and, therefore, preferable. Most of them try to
combine the information coming from precision and recall metrics into one score

Balanced Accuracy

o It is essentially the average of recall across classes
o It tend to converge to the accuracy measure if the dataset is balanced

F1-Score

o It is the harmonic mean of precision and recall
o Hence, it is good to spot weak points of a prediction algorithm

Ï Grandini et al. 2020 provide a super useful review of such measures (see reading list)

https://www.dropbox.com/scl/fi/8nw96h6ydl0xhhjo1wgab/readings-and-materials.docx?rlkey=tli50ju5h9k9usmqca2qipjz5&e=1&st=d85pod0v&dl=0

(More on) validation with annotated data

In some cases the accuracy measure is too basic and can give us some biased
evaluation of classification performance

Accuracy can be problematic in case of multi-class classification tasks, and definitely
to avoid in case of class imbalance

Other measures are more robust and, therefore, preferable. Most of them try to
combine the information coming from precision and recall metrics into one score

Balanced Accuracy
o It is essentially the average of recall across classes
o It tend to converge to the accuracy measure if the dataset is balanced

F1-Score

o It is the harmonic mean of precision and recall
o Hence, it is good to spot weak points of a prediction algorithm

Ï Grandini et al. 2020 provide a super useful review of such measures (see reading list)

https://www.dropbox.com/scl/fi/8nw96h6ydl0xhhjo1wgab/readings-and-materials.docx?rlkey=tli50ju5h9k9usmqca2qipjz5&e=1&st=d85pod0v&dl=0

(More on) validation with annotated data

In some cases the accuracy measure is too basic and can give us some biased
evaluation of classification performance

Accuracy can be problematic in case of multi-class classification tasks, and definitely
to avoid in case of class imbalance

Other measures are more robust and, therefore, preferable. Most of them try to
combine the information coming from precision and recall metrics into one score

Balanced Accuracy
o It is essentially the average of recall across classes
o It tend to converge to the accuracy measure if the dataset is balanced

F1-Score
o It is the harmonic mean of precision and recall
o Hence, it is good to spot weak points of a prediction algorithm

Ï Grandini et al. 2020 provide a super useful review of such measures (see reading list)

https://www.dropbox.com/scl/fi/8nw96h6ydl0xhhjo1wgab/readings-and-materials.docx?rlkey=tli50ju5h9k9usmqca2qipjz5&e=1&st=d85pod0v&dl=0

(More on) validation with annotated data

In some cases the accuracy measure is too basic and can give us some biased
evaluation of classification performance

Accuracy can be problematic in case of multi-class classification tasks, and definitely
to avoid in case of class imbalance

Other measures are more robust and, therefore, preferable. Most of them try to
combine the information coming from precision and recall metrics into one score

Balanced Accuracy
o It is essentially the average of recall across classes
o It tend to converge to the accuracy measure if the dataset is balanced

F1-Score
o It is the harmonic mean of precision and recall
o Hence, it is good to spot weak points of a prediction algorithm

Ï Grandini et al. 2020 provide a super useful review of such measures (see reading list)

https://www.dropbox.com/scl/fi/8nw96h6ydl0xhhjo1wgab/readings-and-materials.docx?rlkey=tli50ju5h9k9usmqca2qipjz5&e=1&st=d85pod0v&dl=0

We will be mostly relying on the randomForest package:

o randomForest()

o other functions for post-estimation and validation

Other useful packages for machine learning classifiers are:
class, naivebayes„ and xgboost

When lost, cry for help()!

https://cran.r-project.org/web/packages/randomForest/randomForest.pdf

Recap

Ï Depending on the amount of labelled data used to train our models, we talk of
unsupervised, semisupervised or supervised methods

Ï Unsupervised methods (e.g., LDA), require little ex ante work, but more effort in
terms of ex post interpretation

Ï Semisupervised and supervised methods are preferable when we are interested in
pre-determined labels or categories

Ï They require different amount of annotated input data, but can be also more easily
assessed against gold standard measures

Ï Validation is essential for all models, and many metrics are available to summarise the
performance of a classifier

Next session:

Word-embeddings approaches
and large language models

References I

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003).
Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022.

Eshima, S., Imai, K., and Sasaki, T. (2024).
Keyword-assisted topic models.
American Journal of Political Science, 68(2):730–750.

Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A.,
Pfetsch, B., Heyer, G., Reber, U., Häussler, T., et al. (2018).
Applying lda topic modeling in communication research: Toward a valid and reliable
methodology.
Communication Methods and Measures, 12(2-3):13–38.

Moschella, M., Pinto, L., and Martocchia Diodati, N. (2020).
Let’s speak more? how the ecb responds to public contestation.
Journal of European public policy, 27(3):400–418.

Roberts, M. E., Stewart, B. M., and Airoldi, E. M. (2016).
A model of text for experimentation in the social sciences.
Journal of the American Statistical Association, 111(515):988–1003.

References II

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian,
S. K., Albertson, B., and Rand, D. G. (2014).
Structural topic models for open-ended survey responses.
American journal of political science, 58(4):1064–1082.

Watanabe, K. and Zhou, Y. (2020).
Theory-driven analysis of large corpora: Semisupervised topic classification of the UN
speeches.
Social Science Computer Review, pages 1–21.

Ying, L., Montgomery, J. M., and Stewart, B. M. (2022).
Topics, concepts, and measurement: A crowdsourced procedure for validating topics
as measures.
Political Analysis, 30(4):570–589.

