Session 3
Word-embeddings approaches and large language models

Michele Scotto di Vettimo
King's College London

Q@ https://mscottodivettimo.github.io/
¥ michele.scotto_di_vettimo@kcl.ac.uk

LISS2117 - Quantitative methods for text classification and topic detection

https://mscottodivettimo.github.io/
mailto:michele.scotto_di_vettimo@kcl.ac.uk

Programme

Large language models in short
Embeddings representations
Classification with word-embeddings

Transformers and classification with LLMs

vy vy VY VvVYYyYy

Multilingual text classification

Recap of previous session

40> «F > «E» « > = Q>

previous episodes...

Acquire Documents =——— Preprocess =—— Research Objective

-Existing -
[§ ! -Undigitized

orpora P

-Electronic
sources
Classification

Known Categories Unknown Categories

. / Semisupervised l
Dictionary Mo tli)l ods Fully

Methods Automated

Clustering

SuF(trviscd
N

ethods \

\ Mixed
R Mixed Membership
Individual Membership Models

Classification Models
t (Seeded LDA)

Individual Documem Level

Methods Ensembles

Fig. 1 An overview of text as data methods.

In previous episodes...

In the last session we covered different types of unsupervised, semisupervised and
supervised methods for classification

> Unsupervised: LDA and STM
> Semisupervised: Keyword-assisted topic models

» Supervised: Machine learning algorithms

In previous episodes...

In the last session we covered different types of unsupervised, semisupervised and
supervised methods for classification

> Unsupervised: LDA and STM
> Semisupervised: Keyword-assisted topic models
» Supervised: Machine learning algorithms

All such methods rely predominantly on bag-of-words representation of texts

However, they differ in terms of their overall aim and the amount of input data that
needs to be provided by the analyst to make them work

In previous episodes...

In the last session we covered different types of unsupervised, semisupervised and
supervised methods for classification

> Unsupervised: LDA and STM
> Semisupervised: Keyword-assisted topic models

» Supervised: Machine learning algorithms
All such methods rely predominantly on bag-of-words representation of texts

However, they differ in terms of their overall aim and the amount of input data that
needs to be provided by the analyst to make them work

Best method depends on task (and data), but all techniques need to be validated
somehow

Various performance measures are available, some of them useful in summarising how
good our model is at replicating human coding or some benchmark data

Large language models (LLMs): Intro

Large language models (LLMs): Intro

LLMs are artificial intelligence systems trained on massive amounts of textual data

They learn to predict and generate human-like language by identifying patterns,
relations, and structures in natural language

Large language models (LLMs): Intro

LLMs are artificial intelligence systems trained on massive amounts of textual data

They learn to predict and generate human-like language by identifying patterns,
relations, and structures in natural language
o LLMs are based on neural networks and so called “transformer” architecture (more on
this below)
o Words and sentences are represented in numerical vectors (called embeddings)

o The model then learns statistical relations between words (technically, their
embeddings) so as to produce a “context-aware” understanding of the meaning

o Then, the model uses the learned patterns to perform tasks like translation,
summarization, or classification

Large language models (LLMs): Intro

LLMs are artificial intelligence systems trained on massive amounts of textual data

They learn to predict and generate human-like language by identifying patterns,
relations, and structures in natural language

o LLMs are based on neural networks and so called “transformer” architecture (more on
this below)
o Words and sentences are represented in numerical vectors (called embeddings)

o The model then learns statistical relations between words (technically, their
embeddings) so as to produce a “context-aware” understanding of the meaning

o Then, the model uses the learned patterns to perform tasks like translation,
summarization, or classification

In doing so, they can be used to perform tasks that, traditionally, fall under the
domain of quantitative text analysis (e.g., sentiment analysis, topic labeling, topic
detection, classification)

Popular examples of LLMs include OpenAl's GPT, Google's PaLM, and Meta's
LLaMA

Large language models (LLMs): Intro

LLMs can be fine-tuned or prompted to perform quantitative text analysis

Large language models (LLMs): Intro

LLMs can be fine-tuned or prompted to perform quantitative text analysis
In the context of text classification, LLMs can:

o Directly classify texts using prompt-based methods (e.g., “Classify this tweet as positive
or negative')

Large language models (LLMs): Intro

LLMs can be fine-tuned or prompted to perform quantitative text analysis
In the context of text classification, LLMs can:

o Directly classify texts using prompt-based methods (e.g., “Classify this tweet as positive
or negative')

o Be fine-tuned on labeled datasets for more accuracy and task-specific performance

Large language models (LLMs): Intro

LLMs can be fine-tuned or prompted to perform quantitative text analysis
In the context of text classification, LLMs can:

o Directly classify texts using prompt-based methods (e.g., “Classify this tweet as positive
or negative')

o Be fine-tuned on labeled datasets for more accuracy and task-specific performance

In short, they can do most of the tasks that, until a couple of years ago, would be
implemented with bag-of-words based approaches

Large language models (LLMs): Intro

LLMs can be fine-tuned or prompted to perform quantitative text analysis
In the context of text classification, LLMs can:

o Directly classify texts using prompt-based methods (e.g., “Classify this tweet as positive
or negative')

o Be fine-tuned on labeled datasets for more accuracy and task-specific performance

In short, they can do most of the tasks that, until a couple of years ago, would be
implemented with bag-of-words based approaches

Pros:
o Minimal pre-processing required

Large language models (LLMs): Intro

LLMs can be fine-tuned or prompted to perform quantitative text analysis
In the context of text classification, LLMs can:

o Directly classify texts using prompt-based methods (e.g., “Classify this tweet as positive
or negative')

o Be fine-tuned on labeled datasets for more accuracy and task-specific performance

In short, they can do most of the tasks that, until a couple of years ago, would be
implemented with bag-of-words based approaches
Pros:

o Minimal pre-processing required

o Fewer examples are needed to learn a task

Large language models (LLMs): Intro

LLMs can be fine-tuned or prompted to perform quantitative text analysis
In the context of text classification, LLMs can:
o Directly classify texts using prompt-based methods (e.g., “Classify this tweet as positive
or negative')
o Be fine-tuned on labeled datasets for more accuracy and task-specific performance
In short, they can do most of the tasks that, until a couple of years ago, would be
implemented with bag-of-words based approaches
Pros:
o Minimal pre-processing required
o Fewer examples are needed to learn a task

o Same model can be instructed to perform multiple tasks

Transfer learning

Perhaps the most important advantage and strength of LLMs is that they enable
“transfer learning”

Transfer learning

Perhaps the most important advantage and strength of LLMs is that they enable
“transfer learning”

Transfer learning # Machine learning

Transfer learning

Perhaps the most important advantage and strength of LLMs is that they enable
“transfer learning”

Transfer learning # Machine learning
Machine learning:

o We train a model from scratch (on our training data) to perform a similar task

o The model has no “language knowledge” (i.e., understanding of the semantic
relationships between words)

o The model has no “task knowledge” either, we need to train it

Transfer learning

Perhaps the most important advantage and strength of LLMs is that they enable
“transfer learning”

Transfer learning # Machine learning
Machine learning:

o We train a model from scratch (on our training data) to perform a similar task

o The model has no “language knowledge” (i.e., understanding of the semantic
relationships between words)

o The model has no “task knowledge” either, we need to train it
Transfer learning:

o We use a pre-trained model, and adapt (“fine-tune”) it to our training data, to perform
a specific task

o By being pre-trained on a large amount of texts, LLMs acquire an understanding of
sematic relationship between words (“language knowledge”)

Transfer learning

Perhaps the most important advantage and strength of LLMs is that they enable
“transfer learning”

Transfer learning # Machine learning

Machine learning:

o We train a model from scratch (on our training data) to perform a similar task

o The model has no “language knowledge” (i.e., understanding of the semantic
relationships between words)

o The model has no “task knowledge” either, we need to train it
Transfer learning:

o We use a pre-trained model, and adapt (“fine-tune”) it to our training data, to perform
a specific task
o By being pre-trained on a large amount of texts, LLMs acquire an understanding of
sematic relationship between words (“language knowledge”)
In transfer learning we build on the model's pre-existing language knowledge

With fine-tuning on our data, we allow the model to acquire task-specific knowledge
to better perform our task

Embeddings representations

40> «F > «E» « > = Q>

Embeddings representations

But where does this language knowledge of LLMs come from?

Embeddings representations

But where does this language knowledge of LLMs come from?

Embeddings representation provide “language knowledge”

Embeddings representations
But where does this language knowledge of LLMs come from?

Embeddings representation provide “language knowledge”

Contrary to a bag-of-words representation, an embeddings representation captures
semantic relations among words

Embeddings representations
But where does this language knowledge of LLMs come from?
Embeddings representation provide “language knowledge”

Contrary to a bag-of-words representation, an embeddings representation captures
semantic relations among words

Words are represented by vectors of numbers, describing their position in the
semantic space

E\oq A 3 <

PP A P &
& & & 0 o 3
S T A A

man — | 0.6 | -02 | 0.8 | 09 | -01 | -09 | -0.7

woman
[]

woman — | 0.7 03 0.8 -0.7 01 -0.5 | -0.4

man

o[fee [] o]]

0.8

queen — 01|08 |-09| 08 |-05]|-09

word Word embedding Visualization of word embedding

Embeddings representations

Words with similar meanings have similar vectors, hence they are “close” to each

other in a multi-dimensional semantic space

Banana
(]
.

Apple

Embeddings representations

Words with similar meanings have similar vectors, hence they are “close” to each
other in a multi-dimensional semantic space

Wolf () L]
° e @
og °
° ° . Banana
.
Cat . . L []

Apple

LLMs construct these vectors and map the semantic space by being trained on
millions of texts

Embeddings representations

Each word vector will have many dimensions. You can think of a dimension as a
feature of the word: a learned value that captures some aspects of usage

Embeddings representations

Each word vector will have many dimensions. You

can think of a dimension as a

feature of the word: a learned value that captures some aspects of usage

By converting words to numerical vectors, we embed semantic information into such

vectors (hence the term “word-embeddings”)

0,
%

§ C N N
ST
Y ¢ 7 hl houses
cat |06 |09 |o.1 |0v4 |—0.7|—0,3 |—uz Dimensionality °
reduction of
) wor
kitten a| 05 | 08 |—0.1 | 02 ‘—0.6 |—o 5 |—n 1| embeddings
from 70 t0.20
dog >|A>"| Ul‘mlas U/,.—01|—03‘ Cgtkitten
°
houses >[—ns‘fn4[—m|u1|—u9lm|os| °
dog
woman
man —| 06 —0.2‘0.9 09 —n.1|—0,9|—0.7‘ °
reduction of
woman >|07 |03 ‘09 I 07|01 |—us|—<)4 i o
from 7D to 2D man queen
Lo foe oo To] g
queen —»‘ 08 |—o1 | 08 |;0.9] 08 |—o.5 ‘—0.9|
o . e v
Word Word embedding Dimensionality Visualization of word

reduction

embeddings in 2D

Embeddings representations

Each word vector will have many dimensions. You can think of a dimension as a
feature of the word: a learned value that captures some aspects of usage

By converting words to numerical vectors, we embed semantic information into such
vectors (hence the term “word-embeddings”)

< &
N
&
&

>
© &
& & N

E
? houses
L]

A
%,
e,

S &
3
\\@q‘fé‘b
SRR

§
cat | 06 |09 |o.1 |0v4 ‘—0.7 |—03|fuz‘ Dimensionality
reduction of

or
embeddings
from 70 to 20

kitten a| 0.5 | 0.8 |—U.1 | 02 ‘—0.6 |—ﬂ 5|—n1

- - P A cat
dog >|w> |Lr|‘01|0‘lt\/: <V1| 0:‘ ..kitten

houses >‘—08{01[0")|01|7U9|O3|08| []
dog

woman
mzmﬁfo.z 08 |09 |-0.1]-09|-07 o
duction of ,'/

woman >|O7 |03 ‘Og | 07|01 |—«13|—<M

[os Froao7 Jos os J-or]

queen —>‘ 0.8 |7D‘1 | 08 |70.9‘ 0.8 |70.5 ‘70.91

embeddings
from 70

[
man queen
o

— v — v
Word Word embedding Dimensionality Visualization of word
reduction embeddings in 2D

So a 768-dimensional embedding means that each word is represented by a
768-number vector, where each number encodes part of the word'’s linguistic or
semantic context (768 is the number of dimensions used by base BERT models)

Supervised classification with
word-embeddings

40> «F > «E» « > = Q>

Word-embeddings and machine learning algorithms

Embeddings representations are not just the input for more complex models (such as
LLMs, see below). They can also be used as input for more traditional classification
methods

Word-embeddings and machine learning algorithms

Embeddings representations are not just the input for more complex models (such as
LLMs, see below). They can also be used as input for more traditional classification
methods

Pre-computed word embeddings can be paired with conventional machine-learning
classifiers:

Word-embeddings and machine learning algorithms

Embeddings representations are not just the input for more complex models (such as
LLMs, see below). They can also be used as input for more traditional classification
methods

Pre-computed word embeddings can be paired with conventional machine-learning
classifiers:

» Choose the embeddings

Word-embeddings and machine learning algorithms

Embeddings representations are not just the input for more complex models (such as
LLMs, see below). They can also be used as input for more traditional classification
methods

Pre-computed word embeddings can be paired with conventional machine-learning
classifiers:

» Choose the embeddings

» Turn each text into a single numerical vector

Word-embeddings and machine learning algorithms

Embeddings representations are not just the input for more complex models (such as
LLMs, see below). They can also be used as input for more traditional classification
methods

Pre-computed word embeddings can be paired with conventional machine-learning
classifiers:

» Choose the embeddings
» Turn each text into a single numerical vector

> Feed the text vectors to a traditional classifier (e.g., a random forest)

Word-embeddings and machine learning algorithms

Embeddings representations are not just the input for more complex models (such as
LLMs, see below). They can also be used as input for more traditional classification
methods

Pre-computed word embeddings can be paired with conventional machine-learning
classifiers:

\{

Choose the embeddings

» Turn each text into a single numerical vector

> Feed the text vectors to a traditional classifier (e.g., a random forest)
>

Train and validate as with any other machine learning task

We will be mostly relying on the word2vec package:
o word2vec()

Then, we will use once again the randomForest () function to
classify texts using word vectors

When lost, cry for help()!

Transformers

40> «F > «E» « > = Q>

Embeddings and Transformers
Once our words are converted into vectors (embeddings), these embeddings serve as
input to “transformers’ models

Transformers are a type of deep learning model architecture designed to process
sequences of data (embeddings) to add contextual information

Embeddings and Transformers
Once our words are converted into vectors (embeddings), these embeddings serve as
input to “transformers” models

Transformers are a type of deep learning model architecture designed to process
sequences of data (embeddings) to add contextual information

The embeddings go through different “layers”, where their vectors are updated and
adapted into “contextual embeddings”

Word vector for

" " Prediction

‘Apple” is now

closer to “tech” I

than to

“groceries” » Last layer is the
“contextualized”
representation

Vector for o o ” o

“Apple” with

similar distance 04 04 04 04

to “grocesries”

and “tech” ‘ T T T

Apple just launched product upgrades

Embeddings and Transformers

This learning process is what allows LLMs to acquire “language knowledge:
representing ‘apple’ differently in context of ‘groceries’ and ‘technology’

The core elements of this learning process are masked language modelling, the
self-attention mechanism, and positional encoding

Embeddings and Transformers

This learning process is what allows LLMs to acquire “language knowledge:
representing ‘apple’ differently in context of ‘groceries’ and ‘technology’

The core elements of this learning process are masked language modelling, the
self-attention mechanism, and positional encoding

o Masked language modelling: some tokens in the input are replaced with “[MASK]", and
the model is trained to predict them based on context

Embeddings and Transformers

This learning process is what allows LLMs to acquire “language knowledge:
representing ‘apple’ differently in context of ‘groceries’ and ‘technology’

The core elements of this learning process are masked language modelling, the
self-attention mechanism, and positional encoding

o Masked language modelling: some tokens in the input are replaced with “[MASK]", and
the model is trained to predict them based on context

o Self-attention mechanism: each word's representation is updated based on all other
words in the sentence. The model looks at unmasked tokens to infer what word fits
best in the masked position

Embeddings and Transformers

This learning process is what allows LLMs to acquire “language knowledge:
representing ‘apple’ differently in context of ‘groceries’ and ‘technology’

The core elements of this learning process are masked language modelling, the
self-attention mechanism, and positional encoding

o Masked language modelling: some tokens in the input are replaced with “[MASK]", and
the model is trained to predict them based on context

o Self-attention mechanism: each word's representation is updated based on all other
words in the sentence. The model looks at unmasked tokens to infer what word fits
best in the masked position

o Positional encoding: adds information about token positions so that the model knows
which token comes first, second, etc.

Context aware embeddings

l~

Corporate needs you to fmd the differences

between this token and this token

W

WWORDS

| They're the same token

Embeddings representations

Not only embeddings representations capture context-specific meaning (“seal” the
animal # “seal” for stamping), they also allow LLMs to make the most out of the
learned “language knowledge"

Embeddings representations

Not only embeddings representations capture context-specific meaning (“seal” the
animal # “seal” for stamping), they also allow LLMs to make the most out of the
learned “language knowledge"

Imagine we train a traditional bag-of-words based model on some texts. If the texts
we want to classify have tokens that are not present in the training texts, the model
does not know how to use those tokens for labelling purposes

Embeddings representations

Not only embeddings representations capture context-specific meaning (“seal” the
animal # “seal” for stamping), they also allow LLMs to make the most out of the

learned “language knowledge"

Imagine we train a traditional bag-of-words based model on some texts. If the texts
we want to classify have tokens that are not present in the training texts, the model
does not know how to use those tokens for labelling purposes

On the contrary, by relying on their mapping of the semantic space, LLMs can use
the information contained in the word-embeddings for classification purposes, even if
the tokens are not in our training data

Embeddings representations

Example:
o Training texts:

1. “l live in London” — “United Kingdom"

2. “They work in Paris” — “France”

o Predict: “We are travelling to Manchester’ — 7

Embeddings representations

Example:
o Training texts:

1. “l live in London” — “United Kingdom"

2. “They work in Paris” — “France”

o Predict: “We are travelling to Manchester’ — 7

» Classic bag-of-words approach can’'t map any token in the new text to the labels

Embeddings representations

Example:
o Training texts:
1. “l live in London” — “United Kingdom"

2. “They work in Paris” — “France”

o Predict: “We are travelling to Manchester’ — 7

» Classic bag-of-words approach can’'t map any token in the new text to the labels

> Word-embedding approach will figure out that the vector of “Manchester” is closer to
the vector for “London” than to the vector for “Paris”, and assing the label accordingly

Embeddings representations

Example:
o Training texts:
1. “l live in London” — “United Kingdom"

2. “They work in Paris” — “France”

o Predict: “We are travelling to Manchester’ — 7

» Classic bag-of-words approach can’'t map any token in the new text to the labels

> Word-embedding approach will figure out that the vector of “Manchester” is closer to
the vector for “London” than to the vector for “Paris”, and assing the label accordingly

Given that such models possess some prior knowledge of the language, they can be
used in universal tasks (i.e., a task format that does not require task-specific
adaptation) without further fine-tuning (i.e., without providing them with additional

task knowledge)

80

We will run our LLMs in Python language via Google Colab

o 1. Getting started
o 2. Transformers

o 3. Universal tasks
We will use Colab to run models stored on the Hugging Face
repository. For this, you need to register a free account and
create an access token (see how to create a token here).

https://colab.research.google.com/drive/1UK2KvKiBZOgIZ0uUEZHsM2m5oXCiK3tW?usp=sharing
https://colab.research.google.com/drive/1PDhO8uc_BNs6mAGX5XFhIkwIoPSF5emy?usp=sharing
https://colab.research.google.com/drive/1UCFV1yqm2viYl-JjVvtXjHpH1fAkSB18?usp=sharing
https://huggingface.co/
https://www.youtube.com/watch?v=uBSbgQ1qPHI&ab_channel=UnitedTopTech

Classification with transformers models

40> «F > «E» « > = Q>

Transformer-based models for classification

Although models based on the transformers architecture (like BERT) are primarily
trained to predict masked words, they can be further trained to perform tasks such as
classification

The training process (techincally called fine-tuning) allows the model to acquire the
“task knowledge” that complements its pre-existing “language knowledge”" acquired
during pre-training

Transformer-based models for classification

Although models based on the transformers architecture (like BERT) are primarily
trained to predict masked words, they can be further trained to perform tasks such as
classification

The training process (techincally called fine-tuning) allows the model to acquire the
“task knowledge” that complements its pre-existing “language knowledge”" acquired
during pre-training

The fine-tuning of a pre-trained LLM looks very similar to the training of a machine
learning algorithm

Transformer-based models for classification

Although models based on the transformers architecture (like BERT) are primarily
trained to predict masked words, they can be further trained to perform tasks such as
classification

The training process (techincally called fine-tuning) allows the model to acquire the
“task knowledge” that complements its pre-existing “language knowledge”" acquired
during pre-training

The fine-tuning of a pre-trained LLM looks very similar to the training of a machine
learning algorithm

o Select the LLM you wish to use

Transformer-based models for classification

Although models based on the transformers architecture (like BERT) are primarily
trained to predict masked words, they can be further trained to perform tasks such as
classification

The training process (techincally called fine-tuning) allows the model to acquire the
“task knowledge” that complements its pre-existing “language knowledge”" acquired
during pre-training

The fine-tuning of a pre-trained LLM looks very similar to the training of a machine
learning algorithm

o Select the LLM you wish to use

o Tokenise your texts (Note: here we get word-embeddings) and aggregate

Transformer-based models for classification

Although models based on the transformers architecture (like BERT) are primarily
trained to predict masked words, they can be further trained to perform tasks such as
classification

The training process (techincally called fine-tuning) allows the model to acquire the
“task knowledge” that complements its pre-existing “language knowledge”" acquired
during pre-training
The fine-tuning of a pre-trained LLM looks very similar to the training of a machine
learning algorithm

o Select the LLM you wish to use

o Tokenise your texts (Note: here we get word-embeddings) and aggregate

o Perform train-test split (or train-test-validation split for tuning hyperparameters)

Transformer-based models for classification

Although models based on the transformers architecture (like BERT) are primarily
trained to predict masked words, they can be further trained to perform tasks such as
classification

The training process (techincally called fine-tuning) allows the model to acquire the
“task knowledge” that complements its pre-existing “language knowledge”" acquired
during pre-training

The fine-tuning of a pre-trained LLM looks very similar to the training of a machine
learning algorithm

o Select the LLM you wish to use

o Tokenise your texts (Note: here we get word-embeddings) and aggregate

o Perform train-test split (or train-test-validation split for tuning hyperparameters)

o Fine-tune the model on your training data to adapt embeddings and learn task
knowledge

Transformer-based models for classification

Although models based on the transformers architecture (like BERT) are primarily
trained to predict masked words, they can be further trained to perform tasks such as
classification

The training process (techincally called fine-tuning) allows the model to acquire the
“task knowledge” that complements its pre-existing “language knowledge”" acquired
during pre-training

The fine-tuning of a pre-trained LLM looks very similar to the training of a machine
learning algorithm

o Select the LLM you wish to use

o Tokenise your texts (Note: here we get word-embeddings) and aggregate

o Perform train-test split (or train-test-validation split for tuning hyperparameters)

o Fine-tune the model on your training data to adapt embeddings and learn task
knowledge

o Use fine-tuned model to make predictions on new texts

Let's go back to Google Colab

o 4. Fine-tuning BERT

Q>

https://colab.research.google.com/drive/1Zg6kXKj4xnM2B9Bf99itEQySighcWRvN?usp=sharing

Natural Language Inference

40> «F > «E» « > = Q>

Natural Language Inference (NLI)

Natural Language Inference (NLI) is a specific type of data format and text
classification task, and it's just a bit more complex and nuanced than traditional
classification [Laurer et al., 2024]

NLI is the task of determining the relationship between two sentences: a premise and
a hypothesis

Natural Language Inference (NLI)

Natural Language Inference (NLI) is a specific type of data format and text
classification task, and it's just a bit more complex and nuanced than traditional
classification [Laurer et al., 2024]

NLI is the task of determining the relationship between two sentences: a premise and
a hypothesis
The model must classify the relationship as one of:

1. Entailment: the hypothesis must be true given the premise

2. Contradiction: the hypothesis must be false given the premise

3. Neutral: the hypothesis could be true or false; the premise gives no clue

Natural Language Inference (NLI)

context-sentence hypothesis
"Donald Trump stated that the 2020 o) .
election was rigged and that widespread Politicians question the legitimacy of
fraud had occurred. democratic institutions.
NLI task:
Is the hypothesis true, false, or neutral, given the context-sentence?

NLI is about determining if the hypothesis is supported, contradicted, or neutral in
relation to the context

Natural Language Inference (NLI)

Input
Context-hypothesis pair /
"Donald Trump stated that the 2020 [SEP] . . .
election was rigged and that widespread Pol|t|mggﬁqglétre:%g?ntgietﬁ%ggnacy of
fraud had occurred. i
Output
Prob of 3 universal classes /
True: 0.81 Neutral: 0.16.

False: 0.03.

Natural Language Inference (NLI)

Why bother about NLI? NLI is a universal task, and almost any classification task can

be converted into an NLI task [Laurer et al., 2024]

Example Task:
Identifying texts that indicate support for green policies.

Task Reformulated for NLI:

NLI input

NLI output

{context-sentence from your data} [SEP] {hypothesis-sentence
verbalising label}

Prob of "True", “False”,
“Neutral” labels

The government announced a new plan to reduce carbon emissions by True: 0.75
50% over the next decade. [SEP] The government is supporting green False: 0.10
policies. Neutral: 0.15
The government announced a new plan to reduce carbon emissions by True: 0.12
50% over the next decade. [SEP] The government is opposed to green False: 0.70
policies. Neutral: 0.18

Natural Language Inference (NLI)

NLI input

NLI output

{context-sentence from your data} [SEP] {hypothesis-sentence verbalising label}

Most "True" label

The government increased taxes on the wealthy to fund social programs. [SEP] It is about | 0.85
socialism.
The government increased taxes on the wealthy to fund social programs. [SEP] It is about | 0.01
free-market..
The government increased taxes on the wealthy to fund social programs. [SEP] It is about | 0.18
environmentalism..
The government increased taxes on the wealthy to fund social programs. [SEP] It is about | 0.33
nationalism.
o & = = E

Natural Language Inference (NLI)

Standard classification with fine-tuned BERT
Algorithm

Universal classification with BERT-NLI

Interpretation

Algorithm Interpretation

“We need to raise tariffs” **
v S e
nelre “It is about economy” *** Neutral: 0.44
Fabric of Society: 0.01
Social Groups: 0.03
- e | T :
raise tar Manifesto*) 4 BERT-NLI False: 0.07
Political System: 0.02 “It Is about welfare”
B Neutral: 0.70 o
External Relations: 0.31

Democracy: 0.02 "We need to raise tariffs”
Other category: 0.03 "It is about {any verbalised
topic}” | Neutral: ... J

Task 1. Topic Classification

“Our armed forces keep
s safe”

ir armed forces
keep us safe”

Neutral: 0.36

“Our armed forces keep
us safe”

Task 2. Stance Detection

Fahe .02

“The Military is good” @ Neutral: 0.15

“The Military is bad”

Natural Language Inference (NLI)

In the context of LLMs for text classification, NLI has various advantages over other
approaches

Natural Language Inference (NLI)

In the context of LLMs for text classification, NLI has various advantages over other
approaches

1. Great availability of dataset in NLI-format (hypothesis-context pairs) for training

Natural Language Inference (NLI)

In the context of LLMs for text classification, NLI has various advantages over other
approaches

1. Great availability of dataset in NLI-format (hypothesis-context pairs) for training

2. Label verbalisation means that class can be explicitly verbalised in the hypothesis based
on a codebook, thus imitating human annotation and allowing the model to build on
its prior knowledge

Natural Language Inference (NLI)

In the context of LLMs for text classification, NLI has various advantages over other
approaches
1. Great availability of dataset in NLI-format (hypothesis-context pairs) for training

2. Label verbalisation means that class can be explicitly verbalised in the hypothesis based
on a codebook, thus imitating human annotation and allowing the model to build on
its prior knowledge

3. Performs well even with a small(er) amount of training examples

Natural Language Inference (NLI)

* F1 Macro

Sentiment News (2 class)

100

500 4000 ;500 500&

26 @V

Manifesto Protectionism (3 class)

100

500

1000

2136 @\

Performance (F1 Macro) vs. Training Data Size

CoronaNet (20 class)

CAP SotU (22 class)

15@0 SQQ“ 1000“

100

500 4000

Manifesto (8 class)

0 400 500 4000 5500 4000 4000

Manifesto Morality (3 class)

.3
0 100 500 4000 15003&3@\\)

* Number of random training examples

500

1000

1500 $°Q“ XQODD

Manifesto Military (3 class)

100 500 4000

BERT-NLI
—— BERT-base
—— SVM_embeddings
—— logistic_embeddings
—- — SVM_tfidf
~ — logistic_tfidf

1‘3003970 @

—-— majority baseline (F1 Macro)
++-== random baseline (F1 Macro)

Let's go back to Google Colab

o 5. Fine-tuning BERT-NLI

Q>

https://colab.research.google.com/drive/1Yz3IleKfJYU-7k5I4EFju0VyiXDnc3Ad?usp=sharing

Classitying texts in multiple languages

40> «F > «E» « > = Q>

Multilingual text classification

Most of the methodologies for text classification are language agnostic; i.e., apart
from obvious adjustments, they can work with languages other than English

Multilingual text classification

Most of the methodologies for text classification are language agnostic; i.e., apart
from obvious adjustments, they can work with languages other than English

However, challenges can arise if we want to analyse more than one language at the
same time. This is what we mean by “multilingual text analysis”

Multilingual text classification

Most of the methodologies for text classification are language agnostic; i.e., apart
from obvious adjustments, they can work with languages other than English

However, challenges can arise if we want to analyse more than one language at the
same time. This is what we mean by “multilingual text analysis”

Running separate — language-specific models — for each language under analysis
hampers the comparability of our findings, unless we “anchor” our models to each
other

Multilingual text classification

Approach 1: (Machine) translation

You basically transform a multilingual classification task into a monolingual one, by
translating all texts into the same language, and using text analysis methods designed
for that language

https://doi.org/10.1093/pan/mpu019

Multilingual text classification

Approach 1: (Machine) translation

You basically transform a multilingual classification task into a monolingual one, by
translating all texts into the same language, and using text analysis methods designed
for that language

o This allows you to use unsupervised methods “easily”

o If you are using dictionary, semisupervised or supervised methods, you just need to deal
with one language; see Lucas et al. (2015)

o Considerations: are you losing information by translating the texts? How good are the
translations? How costly?

https://doi.org/10.1093/pan/mpu019

Multilingual text classification

Approach 2: Separate but comparable analyses

You keep the original languages, and deal with them individually. However, you
ensure comparability of the findings with some preparatory or ex post steps

https://www.tandfonline.com/doi/full/10.1080/19312458.2021.1955845

Multilingual text classification

Approach 2: Separate but comparable analyses

You keep the original languages, and deal with them individually. However, you
ensure comparability of the findings with some preparatory or ex post steps

o For unsupervised methods (e.g., LDA or STM), you need to sell that the estimated
topics are comparable

o If you are using dictionary, or semisupervised methods, you need to produce comparable
sets of keywords; see Maier et al. 2022

o For supervised classification, you have to make sure that the set of training documents
is comparable

o Considerations: great multiplication of costs/efforts. Maybe not worth if you have
many different languages.

https://www.tandfonline.com/doi/full/10.1080/19312458.2021.1955845

Multilingual text classification

Approach 3: Multilingual word-embeddings

You do not work on tokens directly, but transform them into word-embbeddings that
are comparable across languages (same term from different languages will have same
embedding).

https://doi.org/10.1017/pan.2022.29

Multilingual text classification

Approach 3: Multilingual word-embeddings

You do not work on tokens directly, but transform them into word-embbeddings that
are comparable across languages (same term from different languages will have same
embedding).

o You can use the same classifier across all languages; see Licht 2023

o The machine learning model or LLM will build on information from different languages
(and more cases) to make classification

o Considerations: are the embeddings working well in all languages?

https://doi.org/10.1017/pan.2022.29

Recap

> Word-embeddings represent another way of transforming raw texts into numerical
information (vectors)

> As such, they can be used as input in more “traditional” classification methods (like
machine learning algorithms)

» Embeddings representation enables models to get a contextualised understanding of
tokens (using transformers architecture) and thus to incorporate “language
knowledge"

» Transformers-based LLMs can rely on such knowledge to perform universal tasks, or
be fine-tuned on more data to acquire “task-knowledge”

> Another way of using LLMs for classification is to adapt a task to a NLI format

» LLMs can be useful alternative in case of mulitlingual classification, as
word-embeddings help in mapping texts from different languages into the same
semantic space

References |

[§ Laurer, M., Van Atteveldt, W., Casas, A., and Welbers, K. (2024).
Less annotating, more classifying: Addressing the data scarcity issue of supervised
machine learning with deep transfer learning and bert-nli.
Political Analysis, 32(1):84-100.

