scRapEU: An R function to scrape data on EU laws

Michele Scotto di Vettimo*

2024-04-18

Description

scRapEU is an R function that can be used to automatically download data about procedure files available
on the European Union’s Legislative Observatory (OEIL). It downloads most of the information available
on the procedure page (see below), complements it with data from the EUR-Lex website, and stores it in a
dataframe that can subsequently be saved by the user in the preferred format.

Details
Access

The function can be accessed directly from the R workspace as follows:

source("https://mscottodivettimo.github.io/scrapeu/scRapEU.R") # Import function

Alternatively, the code can be downloaded from this link,

Arguments

The function has various arguments that help the user to refine the search criteria.

exact_procedures Use this argument to specify the procedure number of the file(s) to download. The
input should be a character vector as the following: ¢("1999/0003(C0OD)","2018/0330A(COD)"). If not
NULL, the argument overrides all the other search criteria.

years Defines the years to be downloaded.

procedures Defines the procedure types to be searched for. Possible values are the abbreviated names of
the procedure types as per the OEIL naming conventions. By default, it scrapes all procedure types.

extract_texts Selects the text types to be scraped for each procedure. Possible values are "all" (both
proposal and final texts),"proposal" or "final" (for the former or latter type, respectively), and "none"
(default).

summary_only If TRUE, only summaries (not official texts) of the procedures are scraped. The argument is
ignored if extract_texts="none".

verbose If TRUE, print progress messages as the scraper goes.

*Department of Political Economy, King’s College London.

https://mscottodivettimo.github.io
https://oeil.secure.europarl.europa.eu/oeil/home/home.do
https://eur-lex.europa.eu/
https://mscottodivettimo.github.io/scrapeu/scRapEU.R
https://oeil.secure.europarl.europa.eu/oeil/home/home.do

Output

The function returns a dataframe for every year searched, where each row represents a procedure file. If more
years are searched in the same call, the dataframes are stored in a list.

Variables stored

Procedure number Unique identifier of the dossier.

url_ oeil URL of the scraped OEIL page.

title Main title of the procedure on OEIL.

proposal__number Number of the initiating document.

celex_ proposal CELEX number of the initiating document.

date__initiation Date of the initiating document.

proposal__title Title of the initiating document.

procedure__type Type of procedure (e.g., codecision, consultation, etc.)
procedure__macrotype Macro-type of the procedure (e.g., legislation, codification, etc.)

procedure__status Status of the procedure in the decision-making process (e.g., completed, pending,
withdrawn, rejected)

date__end End of conclusion of the procedure. NA if still pending.

celex_ final CELEX number of the final document. NA if not completed.

act__name Short name of the final document (e.g., Regulation 2019/1896). NA if not completed.
leg_ instrument Legal instrument used in the procedure.

subject__oeil Subject codes available on OEIL basic information section.

eurovoc__desc EUROVOC descriptors of the initiating document on EUR-Lex.
directory__code Directory codes of the initiating document on EUR-Lex.

subject__matter Subjct matter elements of the initiating document on EUR-Lex.

cap__topics Policy area classification following the EU Policy Agenda Project (EU-PAP) categories. The
variable matches the value of subject__oeil variable with policy categories from the EUPAP coding scheme.
The scheme is basically an adaptation of the Comparative Agendas Project classification to the European
Union. See Supplementary resources section below.

ep__cmtee (Abbreviated) name of the European Parliament committee(s) responsible for the procedure.

ep__cmtee_ opinion (Abbreviated) name of the European Parliament committee(s) asked for opinion on
the procedure.

rapporteur Name of the rapporteur assigned to the procedure.

rapporteur__appnt Appoitnment date of the rapporteur assigned to the procedure
rapporteur__party Political party of the rapporteur.

rapporteur__url Link to the rapporteur’s webpage on the EP website.

cmtee__dossier Number assigned to the EP committee dossier of the procedure.

plenary_ texts Serial number of texts related to the procedure debated in the European Parliament.
council__config Council configurations debating the procedure.

council__session__id Serial number identifying the Council sessions debating the procedure.

council__session__date Dates of the Council sessions debating the procedure.
b__item Dummy recording whether the procedure has ever been debated as “B” item on the Council agenda.
trilogue Dummy recording reference to inter-institutional negotiations in list of key events.

relationship__acquis List of other procedures somehow impacted (e.g., repealed, amended, etc.) by the
procedure being scraped. Not available for all procedures.

legal__basis Articles of the EU treaties and institutions’ rules of procedures referred to as legal basis of the
procedure being scraped.

commission__dg Commission Directorate-General responsible for the proposal.
commissioner Commissioner responsible for the proposal.

leg_ priority Dummy recording whether the procedure is mentioned among the legislative priorities agreed
by the EU institutions.

leg_ priority_ list Name of legislative priority document(s) referring to the procedure.
summary__proposal Text of the summary of the initiating document.
summary__final Text of the summary of the final act. NA if not completed.
text__proposal Text of the initiating document.

text_ final Text of the final act. NA if not completed.

Minimal examples
By adapting the function’s argument, the user can refine the search criteria in different ways.

The following code shows how to extract procedures based on their procedure numbers:
scrape_this<-c("2018/0330A(C0OD)","2002/0024(COD)") # Vector of procedures to be searched

cods<-scRapEU(exact_procedures=scrape_this) # Call scraping function
view(cods) # View dataframe

The cods object will then be a single dataframe with two rows representing the selected procedures.

The user can also specify the year(s) and the types of procedures to be scraped. The following lines of code
show two examples where one or more years are specified. It is important to note that the number of years
scraped affects the way the dataframes are stored and returned after the execution and, thus, the way they
can be accessed afterwards.

To scrape all codecision files in 1999
cod99<-scRapEU(years=1999, procedures="C0D")

To scrape all codecision files in 1999 and 2000
cod99_00<-scRapEU(years=c(1999:2000) ,procedures="C0D")

cod99 is already a dataframe object. Instead, cod99_00 is a list with two dataframes.

To access the 1999 data stored in cod99_00, the user can do the following:
cod99b<-cod99_00$df1999

As the function returns the scraped data only at the end of the execution, when scraping multiple years it
might be preferable to use the function in a loop to scrape (and save) one year at the time. In this way
completed years can be accessed before the end of the last download.

Loop over the destired years and save each dataframe in a single file

for (year in c(1994:2024)){ # Wow! 30 years of EU laws. How ezciting!
cod<-scRapEU(years = year,procedures="COD") # Get procedures
saveRDS(cod, file = paste("cod",as.character(year),".RDS",sep = "")) # Save RDS file
}
You can now merge all .RDS files in a single dataframe using rbind().
To save in a different format, see R documentation for exporting a dataframe to Exzcel or Stata format

rdss<-list.files(pattern = 'cod*.RDS') # Get all files in the directory

laws<-NULL # Empty object to populate

for (r in 1:length(xrdss)){ # Loop over files to append to object
laws<-rbind(laws,readRDS(rdss[r]))

}

dim(laws) # That's a fairly big dataset!

Debugging and re-use
Common errors and debugging

The function is definitely not error free. In most cases, though, it should run smoothly despite retrieving
NA values instead of true information. Yet, there might be errors that prevent the execution of the code.
Common errors that might occur have to do with accessing the HTML page of the procedure. If this happens,
just re-run the function, as these errors have to do with the scraped websites or the internet connection. Also,
I advise against the use of VPNs while running the web scraper.

At the moment the script can deal with some of these errors by re-attempting the connection to the webpage 5
times with a short time interval between each attempt. If after the last attempt the page cannot be accessed,
the procedure will still be stored in the dataframe, but all the information will have NA values.!

If you have reasons to believe that the error cannot be traced back to the webpage, then you can either flag
it up to me or edit the R code by yourself. In such event I recommend re-running the function with the
argument verbose=TRUE and by specifying the exact procedure number that triggered the error (by providing
a value to the argument exact_procedures) so as to have a clearer idea on the section of the code causing
the error. Also, if the function does not incur in the same error again and, instead, runs smoothly, it might
be that the problem was in fact related to the internet connection.

Supplementary resources

There are various ancillary scripts and datasets that are used to expand on the variables automatically
downloaded by scRapEU. Those are called by the function itself internally, so the user does not need to
interact with them directly. However, they might be of some interest and can be used outside of the scope of
this R function.

More specifically, at the moment these additional resources deal with the matching of OEIL subject descriptors
with more established policy area classifications.

Finally, there is also a short report available at this link giving an overview of the data extracted using the
script and covering the procedures initiated between 1999 and 2023. The report also discusses issues related
to missing data in the downloaded datasets.

Matching OEIL subjects with EU-PAP policy categories To classify procedures according to the
policy area classification from the EU-PAP project, I start from the subject_ oeil variable and manually
matched each value to the corresponding EU-PAP subtopic, which are in turn nested within 21 distinct topics
(see codebook). A spreadsheet with the matching matrix is available at this link.

1The errors currently dealt with in this way are: HPPT errors 403, 404, 500, 505, Connection timeout, Connection refused

https://mscottodivettimo.github.io/scrapeu/scRapEU_report.html
http://euagendas.weebly.com/uploads/9/9/4/3/9943893/eu_codebook_3.3_april-2015_general.pdf
https://mscottodivettimo.github.io/scrapeu/oeil_thesaurus.csv

Citing the tool

The raw script is publicly accessible on the author’s own website and free to download, adapt, and use.
However, I would be grateful if you could acknowledge the use of the original code as follows:

Scotto di Vettimo, M. (2022), “scRapEU: An R function to scrape data on EU laws”. Version April 2024.
DOLI: 10.5281/zenodo.10871232.

Works using the tool

Vassallo, S. and Fieschi, C. (2024) “Towards the European Elections. An analysis of ‘coalition politics’ in
the European Parliament during the 9th parliamentary term and what may change after 9 June”, Istituto
Cattaneo, April 10, 2024. Report available here.

Scotto di Vettimo, M. (2023) “Multi-level politics in action: How national elections make European policies
more responsive”, paper presented at the 5th COMPTEXT Conference, Glasgow, May 2023.

Scotto di Vettimo, M. (2022) “Responsive against the odds? Exploring the link between public opinion and
policies in the European Union”, Doctoral dissertation, King’s College London, London.

https://mscottodivettimo.github.io/
https://zenodo.org/records/10871232
https://www.cattaneo.org/wp-content/uploads/2024/04/April-2024-_-ICC-EP-Elections_eng.pdf

	Description
	Details
	Access
	Arguments

	Output
	Variables stored

	Minimal examples
	Debugging and re-use
	Common errors and debugging
	Supplementary resources

	Citing the tool
	Works using the tool

